One-Step Preparation of Si-Doped Ultra-Long β-Ga2O3 Nanowires by Low-Pressure Chemical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of β-Ga2O3 Nanowires
2.2. Characterization Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- dela Torre, H.M.B.; Santos, G.N.C. Synthesis and Characterization of Monoclinic Gallium Oxide Nanomaterials for High-Concentration Ethanol Vapor Detection. IOP Conf. Ser. Mater. Sci. Eng. 2020, 739, 012031. [Google Scholar] [CrossRef]
- Han, N.; Wang, F.; Yang, Z.; Yip, S.; Dong, G.; Lin, H.; Fang, M.; Hung, T.; Ho, J.C. Low-temperature growth of highly crystalline beta-Ga2O3 nanowires by solid-source chemical vapor deposition. Nanoscale Res. Lett. 2014, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, W.; Wu, Z.; Guo, D.; Li, P.; An, Y.; Li, L.; Tang, W. Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector. J. Electron. Mater. 2017, 46, 2366–2372. [Google Scholar] [CrossRef]
- Li, S.; Zhi, Y.; Lu, C.; Wu, C.; Yan, Z.; Liu, Z.; Yang, J.; Chu, X.; Guo, D.; Li, P.; et al. Broadband Ultraviolet Self-Powered Photodetector Constructed on Exfoliated beta-Ga2O3/CuI Core-Shell Microwire Heterojunction with Superior Reliability. J. Phys. Chem. Lett. 2021, 12, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Shi, H.; Chen, K.; Guo, D.; Cui, W.; Zhi, Y.; Wang, S.; Wu, Z.; Chen, Z.; Tang, W. Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector. J. Mater. Chem. C 2017, 5, 10562–10570. [Google Scholar] [CrossRef]
- Jia, M.; Wang, F.; Tang, L.; Xiang, J.; Teng, K.S.; Lau, S.P. High-Performance Deep Ultraviolet Photodetector Based on NiO/beta-Ga2O3 Heterojunction. Nanoscale Res. Lett. 2020, 15, 47. [Google Scholar] [CrossRef]
- Qu, G.; Xu, S.; Liu, L.; Tang, M.; Wu, S.; Jia, C.; Zhang, X.; Song, W.; Lee, Y.J.; Xu, J.; et al. Single β-Ga2O3 nanowire back-gate field-effect transistor. Semicond. Sci. Technol. 2022, 37, 085009. [Google Scholar] [CrossRef]
- Xu, S.; Liu, L.; Qu, G.; Zhang, X.; Jia, C.; Wu, S.; Ma, Y.; Lee, Y.J.; Wang, G.; Park, J.-H.; et al. Single β-Ga2O3 nanowire based lateral FinFET on Si. Appl. Phys. Lett. 2022, 120, 153501. [Google Scholar] [CrossRef]
- Guo, D.-Y.; Li, P.-G.; Chen, Z.-W.; Wu, Z.-P.; Tang, W.-H. Ultra-wide bandgap semiconductor of beta-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Phys. Sin. 2019, 68, 078501. [Google Scholar] [CrossRef]
- Qin, Y.; Long, S.; Dong, H.; He, Q.; Jian, G.; Zhang, Y.; Hou, X.; Tan, P.; Zhang, Z.; Lv, H.; et al. Review of deep ultraviolet photodetector based on gallium oxide. Chin. Phys. B 2019, 28, 018501. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Wang, X.; Chen, Y.; Shao, Q.; Wu, G.; Wang, X.; Lin, T.; Shen, H.; Wang, J.; et al. High-performance β-Ga2O3 thickness dependent solar blind photodetector. Opt. Express 2020, 28, 4169–4177. [Google Scholar] [CrossRef]
- Guo, D.; Wu, Z.; Li, P.; An, Y.; Liu, H.; Guo, X.; Yan, H.; Wang, G.; Sun, C.; Li, L.; et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Express 2014, 4, 1067–1076. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Y.; Zhi, Y.; Wang, X.; Chu, X.; Chen, Z.; Li, P.; Wu, Z.; Tang, W. Single-layer graphene electrode enhanced sensitivity and response speed of β-Ga2O3 solar-blind photodetector. Opt. Mater. Express 2019, 9, 1394–1403. [Google Scholar] [CrossRef]
- Tak, B.R.; Garg, M.; Dewan, S.; Torres-Castanedo, C.G.; Li, K.-H.; Gupta, V.; Li, X.; Singh, R. High-temperature photocurrent mechanism of β-Ga2O3 based metal-semiconductor-metal solar-blind photodetectors. J. Appl. Phys. 2019, 125, 144501. [Google Scholar] [CrossRef]
- Xie, C.; Lu, X.T.; Ma, M.R.; Tong, X.W.; Zhang, Z.X.; Wang, L.; Wu, C.Y.; Yang, W.H.; Luo, L.B. Catalyst-Free Vapor–Solid Deposition Growth of β-Ga2O3 Nanowires for DUV Photodetector and Image Sensor Application. Adv. Opt. Mater. 2019, 7, 1901257. [Google Scholar] [CrossRef]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Pearton, S.J. Perspective—Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356–P359. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Y.; Chen, Z.; Guo, D.; Zhang, X.; Li, P.; Wu, Z.; Tang, W. Arrays of Solar-Blind Ultraviolet Photodetector Based on β-Ga2O3 Epitaxial Thin Films. IEEE Photonics Technol. Lett. 2018, 30, 993–996. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, L.; Wang, X.; Guo, D.; Li, W.; Li, L.; Huang, F.; Tang, W. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem. C 2017, 5, 8688–8693. [Google Scholar] [CrossRef]
- He, H.; Orlando, R.; Blanco, M.A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 2006, 74, 195123. [Google Scholar] [CrossRef]
- Tao, X. Bulk gallium oxide single crystal growth. J. Semicond. 2019, 40, 010401. [Google Scholar] [CrossRef]
- Fu, B.; Jian, G.; Mu, W.; Li, Y.; Wang, H.; Jia, Z.; Li, Y.; Long, S.; Shi, Y.; Tao, X. Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG. J. Alloys Compd. 2022, 896, 162830. [Google Scholar] [CrossRef]
- Yao, Y.; Ishikawa, Y.; Sugawara, Y. Revelation of Dislocations in β-Ga2O3 Substrates Grown by Edge-Defined Film-Fed Growth. Phys. Status Solidi 2019, 217, 1900630. [Google Scholar] [CrossRef]
- Zou, X.B.; Xie, D.Y.; Sun, Y.; Wang, C.X. Nanowires mediated growth of beta-Ga2O3 nanobelts for high-temperature (>573 K) solar-blind photodetectors. Nano Res. 2022, 2022, 5548–5554. [Google Scholar] [CrossRef]
- Shin, G.; Kim, H.-Y.; Kim, J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction. Korean J. Chem. Eng. 2018, 35, 574–578. [Google Scholar] [CrossRef]
- Lai, J.; Hasan, M.N.; Swinnich, E.; Tang, Z.; Shin, S.-H.; Kim, M.; Zhang, P.; Seo, J.-H. Flexible crystalline β-Ga2O3 solar-blind photodetectors. J. Mater. Chem. C 2020, 8, 14732–14739. [Google Scholar] [CrossRef]
- Yamamura, K.; Zhu, L.; Irvine, C.P.; Scott, J.A.; Singh, M.; Jallandhra, A.; Bansal, V.; Phillips, M.R.; Ton-That, C. Defect Compensation in Nitrogen-Doped β-Ga2O3 Nanowires: Implications for Bipolar Nanoscale Devices. ACS Appl. Nano Mater. 2022, 5, 12087–12094. [Google Scholar] [CrossRef]
- Li, S.; Guo, D.; Li, P.; Wang, X.; Wang, Y.; Yan, Z.; Liu, Z.; Zhi, Y.; Huang, Y.; Wu, Z.; et al. Ultrasensitive, Superhigh Signal-to-Noise Ratio, Self-Powered Solar-Blind-Photodetector Based on n-Ga2O3/p-CuSCN Core-Shell Microwire Heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 35105–35114. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Zhao, H.; He, C.; Wu, C.; Guo, D.; Zhao, N.; Ungar, G.; Shen, J.; Chu, X.; et al. beta-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection. RSC Adv. 2019, 9, 6064–6069. [Google Scholar] [CrossRef]
- Jia, C.; Jeon, D.W.; Xu, J.; Yi, X.; Park, J.H.; Zhang, Y. Catalyst-Assisted Large-Area Growth of Single-Crystal beta-Ga2O3 Nanowires on Sapphire Substrates by Metal-Organic Chemical Vapor Deposition. Nanomaterials 2020, 10, 1031. [Google Scholar] [CrossRef]
- Yadav, A.; Fu, B.; Bonvicini, S.N.; Ly, L.Q.; Jia, Z.; Shi, Y. β-Ga2O3 Nanostructures: Chemical Vapor Deposition Growth Using Thermally Dewetted Au Nanoparticles as Catalyst and Characterization. Nanomaterials 2022, 12, 2589. [Google Scholar] [CrossRef]
- Korbutowicz, R.; Stafiniak, A.; Serafińczuk, J. Ga2O3 nanowires preparation at atmospheric pressure. Mater. Sci.-Pol. 2017, 35, 412–420. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Gong, S.; Zhou, X.; Yang, Z.; Yang, J.; Han, N.; Chen, Y. Growth of Ga2O3 Nanowires via Cu-As-Ga Ternary Phase Diagram. Crystals 2019, 9, 155. [Google Scholar] [CrossRef]
- Alhalaili, B.; Vidu, R.; Islam, M.S. The Growth of Ga2O3 Nanowires on Silicon for Ultraviolet Photodetector. Sensors 2019, 19, 5301. [Google Scholar] [CrossRef]
- Alhalaili, B.; Mao, H.; Dryden, D.M.; Cansizoglu, H.; Bunk, R.J.; Vidu, R.; Woodall, J.; Islam, M.S. Influence of Silver as a Catalyst on the Growth of β-Ga2O3 Nanowires on GaAs. Materials 2020, 13, 5377. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Suchorska-Woźniak, P.; Szukiewicz, R.; Kuchowicz, M.; Korbutowicz, R.; Teterycz, H. Morphology of Ga2O3 Nanowires and Their Sensitivity to Volatile Organic Compounds. Nanomaterials 2021, 11, 456. [Google Scholar] [CrossRef]
- Alhalaili, B.; Al-Duweesh, A.; Popescu, I.N.; Vidu, R.; Vladareanu, L.; Islam, M.S. Improvement of Schottky Contacts of Gallium Oxide (Ga2O3) Nanowires for UV Applications. Sensors 2022, 22, 2048. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-C.; Zhang, Z.-F.; Yang, X.; He, G.-H.; Lin, C.-N.; Chen, X.-X.; Zang, J.-H.; Zhao, W.-B.; Chen, Y.-C.; Zhang, L.-L.; et al. High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes. Nano Res. 2022, 15, 7631–7638. [Google Scholar] [CrossRef]
- Abdullah, Q.N.; Yam, F.K.; Mohmood, K.H.; Hassan, Z.; Qaeed, M.A.; Bououdina, M.; Almessiere, M.A.; Al-Otaibi, A.L.; Abdulateef, S.A. Free growth of one-dimensional β-Ga2O3 nanostructures including nanowires, nanobelts and nanosheets using a thermal evaporation method. Ceram. Int. 2016, 42, 13343–13349. [Google Scholar] [CrossRef]
- Rajapitamahuni, A.K.; Thoutam, L.R.; Ranga, P.; Krishnamoorthy, S.; Jalan, B. Impurity band conduction in Si-doped β-Ga2O3 films. Appl. Phys. Lett. 2021, 118, 072105. [Google Scholar] [CrossRef]
- Onuma, T.; Saito, S.; Sasaki, K.; Masui, T.; Yamaguchi, T.; Honda, T.; Higashiwaki, M. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy. JPN J. Appl. Phys. 2015, 54, 112601. [Google Scholar] [CrossRef]
- Ho, Q.D.; Frauenheim, T.; Deák, P. Origin of photoluminescence in β−Ga2O3. Phys. Rev. B 2018, 97, 115163. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Feng, Q.; Zhang, Y.; Ning, J.; Zhang, C.; Zhang, J.; Hao, Y. Effects of growth pressure on the characteristics of the β-Ga2O3 thin films deposited on (0001) sapphire substrates. Mater. Sci. Semicond. Process. 2021, 123, 105572. [Google Scholar] [CrossRef]
- Oshima, T.; Okuno, T.; Arai, N.; Suzuki, N.; Ohira, S.; Fujita, S. Vertical solar-blind deep-ultraviolet schottky photodetectors based on β-Ga2O3 substrates. Appl. Phys. Express 2008, 1, 011202. [Google Scholar] [CrossRef]
Year | Substrate | Dopant | L (μm) | D (nm) | Method | References |
---|---|---|---|---|---|---|
2017 | Si/SiO2 | 100 | VLS | [32] | ||
2019 | Al2O3 | ~100 | 100–500 | VS | [16] | |
2019 | Si/SiO2 | 20–100 | VLS | [33] | ||
2019 | Si | Si | 30–70 | 70–160 | LPCVD | [34] |
2020 | GaAs | 10–100 | 25–40 | Oxidation | [35] | |
2020 | Si | 50–900 | HVPG | [1] | ||
2020 | Al2O3 | Si | >6 | 50–200 | MOCVD | [30] |
2021 | Al2O3 | >100 | 80–300 | VLS | [36] | |
2022 | Quartz | 30–100 | 200–1000 | Oxidation | [37] | |
2022 | Al2O3 | Sn | >1000 | >1000 | CVD | [38] |
2022 | Si | 7–25 | CVD | [31] | ||
This work | Si/Al2O3 | Si | >300 | 30–100 | LPCVD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Wang, G.; Wu, S.; Xiang, Y. One-Step Preparation of Si-Doped Ultra-Long β-Ga2O3 Nanowires by Low-Pressure Chemical Vapor Deposition. Crystals 2023, 13, 898. https://doi.org/10.3390/cryst13060898
Tang M, Wang G, Wu S, Xiang Y. One-Step Preparation of Si-Doped Ultra-Long β-Ga2O3 Nanowires by Low-Pressure Chemical Vapor Deposition. Crystals. 2023; 13(6):898. https://doi.org/10.3390/cryst13060898
Chicago/Turabian StyleTang, Minglei, Guodong Wang, Songhao Wu, and Yang Xiang. 2023. "One-Step Preparation of Si-Doped Ultra-Long β-Ga2O3 Nanowires by Low-Pressure Chemical Vapor Deposition" Crystals 13, no. 6: 898. https://doi.org/10.3390/cryst13060898
APA StyleTang, M., Wang, G., Wu, S., & Xiang, Y. (2023). One-Step Preparation of Si-Doped Ultra-Long β-Ga2O3 Nanowires by Low-Pressure Chemical Vapor Deposition. Crystals, 13(6), 898. https://doi.org/10.3390/cryst13060898