Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis Method
3.2. Materials Chracterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalantar-Zadeh, K.; Tang, J.; Daeneke, T.; O’Mullane, A.P.; Stewart, L.A.; Liu, J.; Majidi, C.; Ruoff, R.S.; Weiss, P.S.; Dickey, M.D. Emergence of liquid metals in nanotechnology. ACS Nano 2019, 13, 7388–7395. [Google Scholar] [CrossRef] [PubMed]
- Chiew, C.; Morris, M.J.; Malakooti, M.H. Functional liquid metal nanoparticles: Synthesis and applications. Mater. Adv. 2021, 2, 7799–7819. [Google Scholar] [CrossRef]
- Chiechi, R.C.; Weiss, E.A.; Dickey, M.D.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 2008, 47, 142–144. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y.; Genzer, J.; Dickey, M.D. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017, 8, 3832–3837. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei Akbari, M.; Zhuiykov, S. Dynamic self-rectifying liquid metal–semiconductor heterointerfaces: A platform for development of bioinspired afferent system. ACS Appl. Mater. Interfaces 2021, 13, 60636–60647. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Verpoort, F.; Zhuiykov, S. Plasma-enhanced elemental enrichment of liquid metal interfaces: Towards realization of GaS nanodomains in two-dimensional Ga2O3. Appl. Mater Today 2022, 27, 101461. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Zhuiykov, S. Plasma-assisted growth of two-dimensional Ga2O3/Gas heterophases on liquid alloy substrate for nanoelectronic applications. Mater. Sci. Forum 2022, 1075, 49–55. [Google Scholar] [CrossRef]
- Li, H.; Qiao, R.; Davis, T.P.; Tang, S.-Y. Biomedical applications of liquid metal nanoparticles: A critical review. Biosensors 2020, 10, 196. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 2019, 10, 3873. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Verpoort, F.; Zhuiykov, S. State-of-the-art surface oxide semiconductors of liquid metals: An emerging platform for development of multifunctional two-dimensional materials. J. Mater. Chem. A 2021, 9, 34–73. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.Y. Recent progress of Ga-based liquid metals in catalysis. RSC Adv. 2022, 12, 24946–24957. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and engineering. Ultrason. Sonochem. 2016, 29, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Doktycz, S.; Suslick, K. Interparticle collisions driven by ultrasound. Science 1990, 247, 1067–1069. [Google Scholar] [CrossRef]
- Gopi, K.R.; Nagarajan, R. Advances in nanoalumina ceramic particle fabrication using sonofragmentation. IEEE Trans. Nanotechnol. 2008, 7, 532–537. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.A.; Duran, A.; Pérez-Rodríguez, J.L. Preparation of submicron talc particles by sonication. Appl. Clay Sci. 2005, 28, 245–255. [Google Scholar] [CrossRef]
- Zeiger, B.W.; Suslick, K.S. Sonofragmentation of molecular crystals. J. Am. Chem. Soc. 2011, 137, 14530–14533. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Hai, Z.; Wei, Z.; Ramachandran, R.K.; Detavernier, C.; Patel, M. Sonochemical functionalization of the low-dimensional surface oxide of galinstan for heterostructured optoelectronic applications. J. Mater. Chem. C 2019, 7, 5584–5595. [Google Scholar] [CrossRef]
- Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059. [Google Scholar] [CrossRef]
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, D.J.; Suslick, K.S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 2005, 434, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Didenko, Y.T.; McNamara, W.B.; Suslick, K.S. Molecular emission from single-bubble sonoluminescence. Nature 2000, 407, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Taleyarkhan, R.P.; West, C.D.; Cho, J.S.; Lahey, R.T.; Nigmatulin, R.I.; Block, R.C. Evidence for nuclear emissions during acoustic cavitation. Science 2002, 295, 1868–1873. [Google Scholar] [CrossRef]
- Suslick, K.S.; Hyeon, T.; Fang, M. Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies. Chem. Mater. 1996, 8, 2172–2179. [Google Scholar] [CrossRef]
- Mdleleni, M.M.; Hyeon, T.; Suslick, K.S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 1998, 120, 6189–6190. [Google Scholar] [CrossRef]
- Calderón-Jiménez, B.; Montoro Bustos, A.R.; Pereira Reyes, R. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Sci. Rep. 2022, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Henglein, A.; Herburger, D.; Gutierrez, M. Sonochemistry: Some factors that determine the ability of a liquid to cavitate in an ultrasonic field. J. Phys. Chem. 1992, 96, 1126–1130. [Google Scholar] [CrossRef]
- Suslick, K.S.; Choe, S.-B.; Cichowlas, A.A.; Grinstaff, M.W. Sonochemical synthesis of amorphous iron. Nature 1991, 353, 414–416. [Google Scholar] [CrossRef]
- Zhang, L.; Belova, V.; Wang, H.; Dong, W.; Möhwald, H. Controlled cavitation at nano/microparticle surfaces. Chem. Mater. 2014, 26, 2244–2248. [Google Scholar] [CrossRef]
- Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [Google Scholar] [CrossRef]
- Martínez, R.F.; Cravotto, G.; Cintas, P. Organic Sonochemistry: A Chemist’s timely perspective on mechanisms and reactivity. J. Org. Chem. 2021, 86, 13833–13856. [Google Scholar] [CrossRef]
- Kis-Csitári, J.; Kónya, Z.; Kiricsi, I. Sonochemical Synthesis of Inorganic Nanoparticles. In Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics; Vaseashta, A., Mihailescu, I.N., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Tuziuti, T.; Yasui, K.; Kato, K. Influence of degree of gas saturation on multibubble sonoluminescence intensity. J. Phys. Chem. A 2011, 115, 5089–5093. [Google Scholar] [CrossRef]
- Jung, S.-H.; Oh, E.; Lee, K.-H.; Yang, Y.; Park, C.G.; Park, W.; Jeong, S.-H. Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 2008, 8, 265–269. [Google Scholar] [CrossRef]
- Vabbina, P.K.; Karabiyik, M.; Al-Amin, C.; Pala, N.; Das, S.; Choi, W.; Saxena, T.; Shur, M. Controlled synthesis of single-crystalline ZnO nanoflakes on arbitrary substrates at ambient conditions. Part. Part. Syst. Charact. 2014, 31, 190–194. [Google Scholar] [CrossRef]
- Nemamcha, A.; Rehspringer, J.-L.; Khatmi, D. Synthesis of palladium nanoparticles by sonochemical reduction of palladium (II) nitrate in aqueous solution. J. Phys. Chem. B 2006, 110, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Kumar, P.V.; Cao, Z.; Han, J.; Daeneke, T.; Esrafilzadeh, D.; O’Mullane, A.P.; Tang, J.; Rahim, A.; Kalantar-Zadeh, K. Low temperature mechano-catalytic biofuel conversion using liquid metals. J. Chem. Eng. 2023, 452, 139350. [Google Scholar] [CrossRef]
- Cai, S.; Ghasemian, M.B.; Rahim, M.A.; Baharfar, M.; Yang, J.; Tang, J.; Kalantar-Zadeh, K.; Allioux, F.-M. Formation of inorganic liquid gallium particle–manganese oxide composites. Nanoscale 2023, 15, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, M.B.; Wang, Y.; Allioux, F.-M.; Zavabeti, A.; Kalantar-Zadeh, K. Coating of gallium-based liquid metal particles with molybdenum oxide and oxysulfide for electronic band structure modulation. Nanoscale 2023, 15, 5891–5898. [Google Scholar] [CrossRef]
- Echeverria, C.A.; Tang, J.; Cao, Z.; Esrafilzadeh, D.; Kalantar-Zadeh, K. Ag-Ga bimetallic nanostructures ultrasonically prepared from silver–liquid gallium core-shell systems engineered for catalytic applications. ACS Appl. Nano Mater. 2022, 5, 6820–6831. [Google Scholar] [CrossRef]
- Tang, J.; Tang, J.; Mayyas, M.; Ghasemian, M.B.; Sun, J.; Rahim, M.A.; Yang, J.; Han, J.; Lawes, D.J.; Jalili, R.; et al. Liquid-metal-enabled mechanical-energy-induced CO2 conversion. Adv. Matter. 2022, 34, 2105789. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Ho, W. Graphene-based photocatalysis for CO2 reduction to solar fuel. J. Phys. Chem. Lett. 2015, 6, 4244–4251. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Yu, X.; Zhang, Z.; Liang, Y.; Wang, H. Highly selective and active CO2 reduction electrocatalysis based on cobalt phthalocyanine /carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, K.; Xiao, W.; Cheng, B. Photocatalysis reduction of CO2 into hydrocarbon solar fuel cells over G-C3N4-Pt nanocomposite photocatalyst. Phys. Chem. Chem Phys. 2014, 16, 11492–11501. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, H.; Liu, Y.; Li, J.H. Graphene and its derivatives for development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387. [Google Scholar] [CrossRef]
- Chanda, D.; Basu, S. Carbon doped selenium electrocatalyst toward CO2 reduction to chemical fuels. Electrochem. Sci. Adv. 2022, 2, e2100098. [Google Scholar] [CrossRef]
- Yang, C.; Jacobs, C.B.; Nguyen, M.D.; Ganesana, M.; Zestos, A.G.; Ivanov, I.N.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B.; Venton, B.J. Carbon nanotubes grown on metal microelectrodes for the detection of dopamine. Anal. Chem. 2016, 88, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Kranert, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman tensor elements of β-Ga2O3. Sci. Rep. 2016, 6, 35964. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Hu, J.; Verpoort, F.; Lu, H.; Zhuiykov, S. Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 2020, 12, 83. [Google Scholar] [CrossRef]
- Cooke, J.; Ranga, P.; Jesenovec, J.; McCloy, J.S.; Krishnamoorthy, S.; Scarpulla, M.A.; Sensale-Rodriguez, B. Effect of extended defects on photoluminescence of gallium oxide and aluminum gallium oxide epitaxial films. Sci. Rep. 2022, 12, 3243. [Google Scholar] [CrossRef]
- Zakaria, R.; Hamdan, K.S.; Che Noh, S.M.; Supangat, A.; Sookhakian, M. Surface plasmon resonance and photoluminescence studies of Au and Ag micro-flowers. Opt. Mater. Express 2015, 5, 943–950. [Google Scholar] [CrossRef]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.Y. Plasmon-enhanced light–matter interactions and applications. NPJ Comput Mater 2019, 5, 45. [Google Scholar] [CrossRef]
- Goldan, A.H.; Li, C.; Pennycook, S.J.; Schneider, J.; Blom, A.; Zhao, W. Molecular structure of vapor-deposited amorphous selenium. J. Appl. Phys. 2016, 120, 135101. [Google Scholar] [CrossRef]
- Molas, M.R.; Tyurnina, A.V.; Zólyomi, V.; Ott, A.K.; Terry, D.J.; Hamer, M.J.; Yelgel, C.; Babiński, A.; Nasibulin, A.G.; Ferrari, A.C.; et al. Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. Faraday Discuss. 2021, 227, 163–170. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnol. 2014, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Nikam, P.B.; Salunkhe, J.D.; Minkina, T.; Rajput, V.D.; Kim, B.S.; Patil, S.V. A review on green synthesis and recent applications of red nano Selenium. Results Chem. 2022, 4, 100581. [Google Scholar] [CrossRef]
- Störmer, H.; Gerthsen, D. Microstructure characterization of nanoscale dielectric layers on niobium. Microsc. Microanal. 2003, 9, 238–239. [Google Scholar] [CrossRef]
- Huang, B.X.; Wang, K.; Churchb, J.S.; Li, Y.-S. Characterization of oxides on niobium by raman and infrared spectroscopy. Electrochim. Acta 1999, 44, 2571–2577. [Google Scholar] [CrossRef]
- Baharfar, M.; Mayyas, M.; Rahbar, M.; Allioux, F.M.; Tang, J.; Wang, Y.; Cao, Z.; Centurion, F.; Jalili, R.; Liu, G.; et al. Exploring interfacial graphene oxide reduction by liquid metals: Application in selective biosensing. ACS Nano 2021, 15, 19661–19671. [Google Scholar] [CrossRef] [PubMed]
Shape | Dimension (μm) | Composition of Nanostructure Wt.% | Se Concentration in Solution (μmol/L) |
2D single-layered nanosheets | 1.0 < Length (L) < 100 0.05 < Thickness (D) < 2 | Se ≥ 30 20 < Ga < 50 | 0.2, 0.5 |
2D multi-layered nanosheets | 50 < L < 1000 0.5 < D < 10 | Se ≥ 40 20 < Ga < 40 | 0.2, 0.5 |
1D nanostructures | 100 < L < 700 50 < D < 100 | Se ≥ 90 | 0.1, 0.2 |
0D nanoparticles | 0.001 < D < 0.020 | Se ≥ 90 | 0.1, 0.2, 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbalaei Akbari, M.; Siraj Lopa, N.; Zhuiykov, S. Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces. Crystals 2023, 13, 604. https://doi.org/10.3390/cryst13040604
Karbalaei Akbari M, Siraj Lopa N, Zhuiykov S. Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces. Crystals. 2023; 13(4):604. https://doi.org/10.3390/cryst13040604
Chicago/Turabian StyleKarbalaei Akbari, Mohammad, Nasrin Siraj Lopa, and Serge Zhuiykov. 2023. "Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces" Crystals 13, no. 4: 604. https://doi.org/10.3390/cryst13040604
APA StyleKarbalaei Akbari, M., Siraj Lopa, N., & Zhuiykov, S. (2023). Crystalline Nanodomains at Multifunctional Two-Dimensional Liquid–Metal Hybrid Interfaces. Crystals, 13(4), 604. https://doi.org/10.3390/cryst13040604