Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells
Abstract
1. Introduction
2. Experiments
3. Simulated Method and Structure Definition
4. Result and Discussion
4.1. Wavefunction Overlap and Peak Wavelength Shift
4.2. Reflectivity Spectrum and FWHM
4.3. Emission Spectrum of µ-RCLED
4.4. Divergence Angle of µ-RCLED with Staggered MQWs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chou, H.-H.; Huang, W.-T. Asymmetrical bidirectional optical wireless communication system based on a transmissive 1D LC-SLM for NG-PON2. Opt. Lett. 2020, 45, 4543–4546. [Google Scholar] [CrossRef]
- Chou, H.H.; Huang, W.T. Wavelength Tunable Asymmetric B-OWC System Based on Self-Injection Locking for TDM-PONs. IEEE Photonics Technol. Lett. 2021, 33, 370–372. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Tsai, W.; Wang, Z.; Hung, C.; Su, C.; Lu, Y. A 5 m/25 Gbps Underwater Wireless Optical Communication System. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wu, T.; Yue, L.; Huang, Y.-M.; Liu, M.; James Singh, K.; Lin, W.; Lu, T.; Zheng, X.; Zhou, Z.; Kuo, H.-C.; et al. A highly stable full-color display device with VLC application potential using semipolar micro-LEDs and all-inorganic encapsulated perovskite nanocrystal. Photon. Res. 2021, 9, 2132. [Google Scholar] [CrossRef]
- Do, T.-H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.-C.; Huang, W.-T.; Lee, W.-B.; Chow, C.-W.; Chang, S.-W.; Kuo, H.-C. Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals 2021, 11, 1098. [Google Scholar] [CrossRef]
- Peng, C.-Y.; Huang, W.-T.; Lu, Z.-K.; Chen, S.-C.; Kuo, H.-C. Design of High-Power Red VCSEL on a Removable Substrate. Photonics 2022, 9, 763. [Google Scholar] [CrossRef]
- Huang, W.-T.; Peng, C.-Y.; Chiang, H.; Huang, Y.-M.; Singh, K.J.; Lee, W.-B.; Chow, C.-W.; Chen, S.-C.; Kuo, H.-C. Toward high-bandwidth yellow-green micro-LEDs utilizing nanoporous distributed Bragg reflectors for visible light communication. Photon. Res. 2022, 10, 1810–1818. [Google Scholar] [CrossRef]
- Takeuchi, T.; Amano, H.; Akasaki, I. Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells. Jpn. J. Appl. Phys. 2000, 39, 413. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Peng, C.-Y.; Miao, W.-C.; Chiang, H.; Lee, T.-Y.; Chang, Y.-H.; Singh, K.J.; Iida, Z.D.; Horng, R.-H.; Chow, C.-W.; et al. High-efficiency InGaN red micro-LEDs for visible light communication. Photon. Res. 2022, 10, 1978–1986. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Chang, Y.-H.; Lin, Y.; Liou, F.-J.; Hsu, Y.-C.; Song, J.; Choi, J.; Chow, C.-W.; Lin, C.-C.; et al. High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Arif, R.A.; Ee, Y.-K.; Tansu, N. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. 2007, 91, 091110. [Google Scholar] [CrossRef]
- Zhao, H.; Arif, R.A.; Tansu, N. Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540 nm. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1104–1114. [Google Scholar] [CrossRef]
- Schubert, E.F.; Hunt, N.E.J.; Micovic, M.; Malik, R.J.; Sivco, D.L.; Cho, A.Y.; Zydzik, G.J. Highly Efficient Light-Emitting Diodes with Microcavities. Science 1994, 265, 943–945. [Google Scholar] [CrossRef]
- Song, Y.-K.; Diagne, M.; Zhou, H.; Nurmikko, A.V.; Carter-Coman, C.; Kern, R.S.; Kish, F.A.; Krames, M.R. A vertical injection blue light emitting diode in substrate separated InGaN heterostructures. Appl. Phys. Lett. 1999, 74, 3720–3722. [Google Scholar] [CrossRef]
- Horng, R.H.; Wei-Kai, W.; Shin-Yung, H.; Dong-Sing, W. Effect of resonant cavity in wafer-bonded Green InGaN LED with dielectric and silver mirrors. IEEE Photonics Technol. Lett. 2006, 18, 457–459. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, B.; Zhao, Z.; Gu, D.; Zhang, Y.; Lv, W.; Lv, X. Gallium nitride-based resonant cavity light-emitting diode with single-longitudinal-mode emission. Opt. Lett. 2022, 47, 4616–4619. [Google Scholar] [CrossRef]
- Hong, K.-B.; Huang, W.-T.; Hsu, W.-C.; Tu, C.-C.; Kuo, H.-C. Investigation of InGaN-Based Green Micro-Photonic-Crystal- Light-Emitting-Diodes with Bottom, Nanoporous, Distributed Bragg Reflectors. Photonics 2022, 9, 939. [Google Scholar] [CrossRef]
- Gong, Z.; Jin, S.; Chen, Y.; McKendry, J.; Massoubre, D.; Watson, I.M.; Gu, E.; Dawson, M.D. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J. Appl. Phys. 2010, 107, 013103. [Google Scholar] [CrossRef]
- Sarkar, N.; Ghosh, S. Temperature dependent band gap shrinkage in GaN: Role of electron–phonon interaction. Solid State Commun. 2009, 149, 1288–1291. [Google Scholar] [CrossRef]
- Auvergne, D.; Camassel, J.; Mathieu, H. Band-gap shrinkage of semiconductors. Phys. Rev. B 1975, 11, 2251–2259. [Google Scholar] [CrossRef]
- Haemmer, M.; Roycroft, B.; Akhter, M.; Dinh, D.V.; Quan, Z.; Zhao, J.; Parbrook, P.J.; Corbett, B. Size-Dependent Bandwidth of Semipolar (11-22) Light-Emitting-Diodes. IEEE Photonics Technol. Lett. 2018, 30, 439–442. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 2012, 101, 231110. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, S.; Kim, S.-J.; Yim, S.-Y.; Myoung, N.; Lee, K.; Kim, J.S.; Jung, S.H.; Chung, T.-H.; Park, S.-J. Enhanced optical output in InGaN/GaN light-emitting diodes by tailored refractive index of nanoporous GaN. Nanotechnology 2019, 30, 415301. [Google Scholar] [CrossRef] [PubMed]
- Yoldas, B.E.; Partlow, D.P. Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Film. 1985, 129, 1–14. [Google Scholar] [CrossRef]
- Mao, P.; Sun, F.; Yao, H.; Chen, J.; Zhao, B.; Xie, B.; Han, M.; Wang, G. Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films. Nanoscale 2014, 6, 8177–8184. [Google Scholar] [CrossRef]
- Arif, R.A.; Zhao, H.; Ee, Y.K.; Tansu, N. Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes. IEEE J. Quantum Electron. 2008, 44, 573–580. [Google Scholar] [CrossRef]
- Stacy, W.; Mueller, G.; Reitze, D.; Tanner, D.B.; Whiting, B.F. Linewidth-broadened Fabry–Perot cavities within future gravitational wave detectors. Class. Quantum Gravity 2004, 21, S1031. [Google Scholar] [CrossRef]
- Butté, R.; Christmann, G.; Feltin, E.; Castiglia, A.; Levrat, J.; Cosendey, G.; Altoukhov, A.; Carlin, J.-F.; Grandjean, N. Room Temperature Polariton Lasing in III-Nitride Microcavities: A Comparison with Blue GaN-Based Vertical Cavity Surface Emitting Lasers; SPIE: Washington, DC, USA, 2009; Volume 7216. [Google Scholar]
- Zhao, G.Y.; Ishikawa, H.; Yu, G.; Egawa, T.; Watanabe, J.; Soga, T.; Jimbo, T.; Umeno, M. Thermo-optical nonlinearity of GaN grown by metalorganic chemical- vapor deposition. Appl. Phys. Lett. 1998, 73, 22–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, T.-H.; Huang, W.-T.; Hong, K.-B.; Lee, T.-Y.; Bai, Y.-H.; Pai, Y.-H.; Tu, C.-C.; Huang, C.-H.; Li, Y.; Kuo, H.-C. Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells. Crystals 2023, 13, 572. https://doi.org/10.3390/cryst13040572
Hsieh T-H, Huang W-T, Hong K-B, Lee T-Y, Bai Y-H, Pai Y-H, Tu C-C, Huang C-H, Li Y, Kuo H-C. Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells. Crystals. 2023; 13(4):572. https://doi.org/10.3390/cryst13040572
Chicago/Turabian StyleHsieh, Tsau-Hua, Wei-Ta Huang, Kuo-Bin Hong, Tzu-Yi Lee, Yi-Hong Bai, Yi-Hua Pai, Chang-Ching Tu, Chun-Hui Huang, Yiming Li, and Hao-Chung Kuo. 2023. "Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells" Crystals 13, no. 4: 572. https://doi.org/10.3390/cryst13040572
APA StyleHsieh, T.-H., Huang, W.-T., Hong, K.-B., Lee, T.-Y., Bai, Y.-H., Pai, Y.-H., Tu, C.-C., Huang, C.-H., Li, Y., & Kuo, H.-C. (2023). Optoelectronic Simulations of InGaN-Based Green Micro-Resonant Cavity Light-Emitting Diodes with Staggered Multiple Quantum Wells. Crystals, 13(4), 572. https://doi.org/10.3390/cryst13040572