Proposal for Deep-UV Emission from a Near-Infrared AlN/GaN-Based Quantum Cascade Device Using Multiple Photon Up-Conversion
Abstract
:1. Introduction
2. Experimental Setup
3. Proposed Operation of the Device
4. Prospective Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruhnke, N.; Müller, A.; Eppich, B.; Maiwald, M.; Sumpf, N.; Erbert, G.; Tränkle, G. Compact deep UV system at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE Photonics Technol. Lett. 2018, 30, 289–292. [Google Scholar] [CrossRef]
- Den Engelsen, D.; Fern, G.R.; Ireland, T.G.; Harris, P.G.; Hobson, P.R.; Lipman, A.; Dhillon, R.; Marsh, P.J.; Silver, J. Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope. J. Mater. Chem. C 2016, 4, 7026. [Google Scholar] [CrossRef] [Green Version]
- Song, S.B.; Yoon, S.; Kim, S.Y.; Yang, S.; Seo, S.-Y.; Cha, S.; Jeong, H.-W.; Watanabe, K.; Taniguchi, T.; Lee, G.-H.; et al. Deep-ultra-violet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures. Nat. Commun. 2021, 12, 7134. [Google Scholar] [CrossRef]
- Milleville, C.C.; Chen, E.Y.; Lennon, K.R.; Cleveland, J.M.; Kumar, A.; Zhang, J.; Bork, J.A.; Tessier, A.; LeBeau, J.M.; Chase, D.B.; et al. Engineering efficient photon upconversion in semiconductor heterostructures. ACS Nano 2019, 13, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chen, B.; Guo, Y.; Zhu, Q.; Zhao, J.; Li, Y.; Chen, X.; Wu, Y.; Gao, Y.; Jin, L.; et al. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun. 2022, 13, 1032. [Google Scholar] [CrossRef]
- Motmaen, A.; Rostami, A.; Matloub, S. Ultra-high efficiency integrated mid infrared to visible up-conversion system. Sci. Rep. 2020, 10, 9325. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, Y.; Fujita, K.; Smith, N.I.; Kawata, S. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed. Opt. Express 2016, 7, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Mahboub, M.; Huang, Z.; Tang, M.L. Efficient infrared to visible upconversion with subsolar irradiance. Nano Lett. 2016, 16, 7169–7175. [Google Scholar] [CrossRef]
- Kallepalli, D.L.N.; Alshehri, A.L.; Marquez, D.T.; Andrzejewski, L.; Scaiano, J.C.; Bhardwaj, R. Ultra-high density optical data storage in common transparent plastics. Nat. Sci. Rep. 2016, 6, 26163. [Google Scholar] [CrossRef]
- Nakamura, S.; Fasol, G. The Blue Laser Diode: GaN Based Light Emitters and Lasers; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Akasaki, I.; Amano, H.; Nakamura, S. The Nobel Prize in Physics. 2014. Available online: https://www.nobelprize.org/prizes/physics/2014/press-release (accessed on 14 April 2015).
- Murayama, M.; Nakayama, Y.; Yamazaki, K.; Hoshina, Y.; Watanabe, H.; Fuutagawa, N.; Kawanishi, H.; Uemura, T.; Narui, H. Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A 2018, 215, 1700513. [Google Scholar] [CrossRef]
- Hofstetter, D.; Baumann, E.; Giorgetta, F.R.; Théron, R.; Wu, H.; Schaff, W.J.; Dawlaty, J.; George, P.A.; Eastman, L.F.; Rana, F.; et al. Photodetector based on intersubband transitions using III-nitride superlattice structures. J. Phys. Condens. Matter 2009, 21, 174208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgetta, F.R.; Baumann, E.; Guillot, F.; Monroy, E.; Hofstetter, D. High frequency (f = 2.37 GHz) room temperature operation of 1.55 µm AlN/GaN intersubband detector. Electron. Lett. 2007, 43, 185–187. [Google Scholar] [CrossRef]
- Shur, M.S.; Gaska, R. Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices 2010, 57, 12–25. [Google Scholar] [CrossRef]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef] [PubMed]
- SaifAddin, B.K.; Almogbel, A.S.; Zollner, C.J.; Wu, F.; Bonef, B.; Iza, M.; Nakamura, S.; Speck, J.S. AlGaN deep-ultraviolet light-emitting diodes grown on SiC substrates. ACS Photonics 2020, 7, 554–561. [Google Scholar] [CrossRef]
- Ichimura, I.; Maeda, F.; Osato, K.; Yamamoto, K.; Kasami, Y. Optical disk recording using a GaN blue-violet laser diode. Jpn. J. Appl. Phys. 2000, 39, 937. [Google Scholar] [CrossRef]
- Wang, D.; Uesugi, K.; Xiao, S.; Norimatsu, K.; Miyake, H. High-quality AlN/sapphire templates prepared by thermal cycle annealing for high-performance ultraviolet light-emitting. Appl. Phys. Express 2021, 14, 035505. [Google Scholar] [CrossRef]
- Ahmad, H.; Lindemuth, J.; Engel, Z.; Matthews, C.M.; McCrone, T.M.; Doolittle, W.A. Substantial p-type conductivity of AlN achieved via Beryllium doping. Adv. Mater. 2021, 33, 2104497. [Google Scholar] [CrossRef]
- Shul, R.J.; McClellan, G.B.; Casalnuovo, S.A.; Rieger, D.J.; Pearton, S.J.; Constantine, C.; Barratt, C.; Karlicek, R.F., Jr.; Tran, C.; Schurman, M. Inductively coupled plasma etching of GaN. Appl. Phys. Lett. 1996, 69, 1119–1121. [Google Scholar] [CrossRef]
- Evans, G.A.; Butler, J.K.; He, R.-H.; Kirk, J.B.; Yao, J.; Zheng, X.; Krishnamoorthy, A.V. Enhanced coupling strength gratings for couplers in III-V-compound dielectric waveguides. IEEE J. Light. Technol. 2017, 35, 2234–2242. [Google Scholar] [CrossRef]
- Graf, M.; Scalari, G.; Hofstetter, D.; Faist, J.; Beere, H.; Linfield, E.; Ritchie, D.; Davies, G. Terahertz range quantum-well infrared photodetector. Appl. Phys. Lett. 2004, 84, 475–477. [Google Scholar] [CrossRef]
- Heber, J.D.; Gmachl, C.; Ng, N.M.; Cho, A.Y. Comparative study of ultrafast intersubband electron scattering times at ~1.55 µm wavelength in GaN/AlGaN heterostructures. Appl. Phys. Lett. 2002, 81, 1237–1239. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Knauer, A.; Kolbe, T.; Hagedorn, S.; Hoepfner, J.; Guttmann, M.; Cho, H.K.; Rass, J.; Ruschel, J.; Einfeldt, S.; Kneissl, M.; et al. Strain induced power enhancement of far-UVC LEDs on high temperature annelaed AlN templates. Appl. Phys. Lett. 2023, 122, 011102. [Google Scholar] [CrossRef]
- Khan, M.A.; Noritoshi, M.; Joosun, Y.; Masafumi, J.; Yoichi, Y.; Hirayama, H. Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance. Sci. Rep. 2022, 12, 2591. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofstetter, D.; Bour, D.P.; Beck, H. Proposal for Deep-UV Emission from a Near-Infrared AlN/GaN-Based Quantum Cascade Device Using Multiple Photon Up-Conversion. Crystals 2023, 13, 494. https://doi.org/10.3390/cryst13030494
Hofstetter D, Bour DP, Beck H. Proposal for Deep-UV Emission from a Near-Infrared AlN/GaN-Based Quantum Cascade Device Using Multiple Photon Up-Conversion. Crystals. 2023; 13(3):494. https://doi.org/10.3390/cryst13030494
Chicago/Turabian StyleHofstetter, Daniel, David P. Bour, and Hans Beck. 2023. "Proposal for Deep-UV Emission from a Near-Infrared AlN/GaN-Based Quantum Cascade Device Using Multiple Photon Up-Conversion" Crystals 13, no. 3: 494. https://doi.org/10.3390/cryst13030494
APA StyleHofstetter, D., Bour, D. P., & Beck, H. (2023). Proposal for Deep-UV Emission from a Near-Infrared AlN/GaN-Based Quantum Cascade Device Using Multiple Photon Up-Conversion. Crystals, 13(3), 494. https://doi.org/10.3390/cryst13030494