The Growth and Spectroscopic Properties of Er, Nd: YSGG Single Crystal Fibers
Abstract
:1. Introduction
2. Methods
2.1. Crystal Fiber Growth
2.2. Spectroscopic Properties
3. Results and Discussion
3.1. The Growth of Crystal Fibers
3.2. Concentration Distribution
3.3. Spectroscopic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Q.; Nie, H.; Mu, W.; Yin, Y.; Zhang, J.; Zhang, B.; He, J.; Tao, X. Bulk growth and an efficient mid-IR laser of high-quality Er: YSGG crystals. CrystEngComm 2019, 21, 1928–1933. [Google Scholar] [CrossRef]
- Newburgh, G.A.; Dubinskii, M. Power and efficiency scaling of Er: ZBLAN fiber laser. Laser Phys. Lett. 2021, 18, 095102. [Google Scholar] [CrossRef]
- Nie, H.; Hu, Q.; Zhang, B.; Sun, X.; Tian, H.; Wang, Y.; Zhang, B.; Jia, Z.; Tao, X.; He, J. Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-mu m Er:YSGG Laser. IEEE Photonics Technol. Lett. 2018, 30, 1400–1403. [Google Scholar] [CrossRef]
- Sojka, L.; Pajewski, L.; Lamrini, S.; Farries, M.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Experimental investigation of actively Q-switched Er3+: ZBLAN fiber laser operating at around 2.8 µm. Sensors 2020, 20, 4642. [Google Scholar] [CrossRef] [PubMed]
- Uehara, H.; Tokita, S.; Kawanaka, J.; Konishi, D.; Murakami, M.; Shimizu, S.; Yasuhara, R. Optimization of laser emission at 2.8 μm by Er: Lu2O3 ceramics. Opt. Express 2018, 26, 3497–3507. [Google Scholar] [CrossRef]
- Wu, B.; Nie, H.; Wang, A.; Zhang, J.; Jia, Z.; Zhang, B.; Fu, X.; Hu, Q.; He, J.; Tao, X. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down technology. CrystEngComm 2019, 21, 6929–6934. [Google Scholar] [CrossRef]
- Délen, X.; Piehler, S.; Didierjean, J.; Aubry, N.; Voss, A.; Ahmed, M.A.; Graf, T.; Balembois, F.; Georges, P. 250 W single-crystal fiber Yb: YAG laser. Opt. Lett. 2012, 37, 2898–2900. [Google Scholar] [CrossRef]
- Guillot, D.; Didierjean, J.; D'Augeres, P.B. Single-crystal fibers amplify power in ultrashort-pulse lasers. Laser Focus World 2017, 53, 26–29. [Google Scholar]
- Dubinskii, M.; Zhang, J.; Fromzel, V.; Chen, Y.; Yin, S.; Luo, C. Low-loss ‘crystalline-core/crystalline-clad’(C4) fibers for highly power scalable high efficiency fiber lasers. Opt. Express 2018, 26, 5092–5101. [Google Scholar] [CrossRef]
- Chen, H.; Buric, M.; Ohodnicki, P.R.; Nakano, J.; Liu, B.; Chorpening, B.T. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 2018, 5, 011102. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, J.; Ye, S.; Ma, X.; Wu, B.; Wang, S.; Wang, F.; Wang, T.; Zhang, B.; Jia, Z. Optimized growth and laser application of yb: Luag single-crystal fibers by micro-pulling-down technique. Crystals 2021, 11, 78. [Google Scholar] [CrossRef]
- Sidletskiy, O.; Lebbou, K.; Kofanov, D. Micro-pulling-down growth of long YAG-and LuAG-based garnet fibres: Advances and bottlenecks. CrystEngComm 2021, 23, 2633–2643. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Zhang, J.; Lin, N.; Wang, G.; Jia, Z.; Zhao, X.; Tao, X. Design and Directional Growth of (Mg1−xZnx)(Al1−yCry)2O4 Single-Crystal Fibers for High-Sensitivity and High-Temperature Sensing Based on Lattice Doping Engineering and Acoustic Anisotropy. Adv. Funct. Mater. 2021, 31, 2103224. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, H.; Yin, Y.; Wang, T.; Jia, Z.; Zhang, J.; Hu, Q.; Lin, N.; Fu, X.; Tao, X. Cracking mechanism and spectral properties of Er, Yb: CaGdAlO4 crystals grown by the LHPG method. CrystEngComm 2020, 22, 955–960. [Google Scholar] [CrossRef]
- Han, Z.; Sun, D.; Zhang, H.; Luo, J.; Quan, C.; Hu, L.; Dong, K.; Chen, Y.; Cheng, M. Investigation of temperature distribution and 2.79 μm laser performance on the Er: YSGG single crystal fiber. Opt. Commun. 2022, 502, 127426. [Google Scholar] [CrossRef]
- Luo, J.; Sun, D.; Zhang, H.; Guo, Q.; Fang, Z.; Zhao, X.; Cheng, M.; Zhang, Q.; Yin, S. Growth, spectroscopy, and laser performance of a 2.79 μm Cr, Er, Pr: GYSGG radiation-resistant crystal. Opt. Lett. 2015, 40, 4194–4197. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Feng, J.; Ji, Y.; Sun, Y.; Wang, Y.; Jia, Z.; Tu, C. 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals. J. Quant. Spectrosc. Radiat. Transf. 2016, 173, 7–12. [Google Scholar] [CrossRef]
- Lisiecki, R.; Głowacki, M.; Berkowski, M.; Ryba-Romanowski, W. Contribution of energy transfer processes to excitation and relaxation of Yb3+ ions in Gd3(Al, Ga)5O12: RE3+, Yb3+ (RE3+ = Tm3+, Er3+, Ho3+, Pr3+). J. Lumin. 2019, 211, 54–61. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, K.; Wang, T.; Zhou, H.; Zhang, N.; Zhang, J.; Ye, L.; Jia, Z.; Tao, X. Sensitive Ho3+, Yb3+ co-doped mixed sesquioxide single crystal fibers thermometry based on upconversion luminescence. J. Alloys Compd. 2022, 891, 162062. [Google Scholar] [CrossRef]
- Chen, J.; Sun, D.; Luo, J.; Zhang, H.; Cao, S.; Xiao, J.; Kang, H.; Yin, S. Performances of a diode end-pumped GYSGG/Er,Pr:GYSGG composite laser crystal operated at 2.79 μm. Opt. Express 2014, 22, 23795–23800. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Wang, T.; Zhang, N.; Liu, W.; Zhang, J.; Li, Y.; Jia, Z.; Tao, X. Growth and spectroscopic properties investigation of Er: LuYAG and Er/Eu: LuYAG single crystal fibers used in mid-infrared lasers. J. Alloys Compd. 2023, 944, 169214. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; Huang, X.; Li, Z.; Yin, H.; Zhu, S.; Chen, Z.; Hang, Y. Sensitization and deactivation effects to Er3+ at ∼2.7 μm mid-infrared emission by Nd3+ ions in Gd0.1Y0.9AlO3 crystal. J. Alloys Compd. 2018, 750, 147–152. [Google Scholar] [CrossRef]
- Deshmukh, P.; Satapathy, S.; Ahlawat, A.; Tiwari, M.K.; Karnal, A.K. Fabrication and characterization of Er, Nd codoped Y2O3 transparent ceramic: A dual mode photoluminescence emitter. J. Alloys Compd. 2018, 754, 32–38. [Google Scholar] [CrossRef]
- Mu, W.; Jia, Z.; Yin, Y.; Hu, Q.; Li, Y.; Wu, B.; Zhang, J.; Tao, X. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. J. Alloys Compd. 2017, 714, 453–458. [Google Scholar] [CrossRef]
- Fukuda, T.; Chani, V.I. Shaped Crystals: Growth by Micro-Pulling-Down Technique; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 8. [Google Scholar]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid infrared lasers for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Zhong, K. Laser performance of neodymium-and erbium-doped GYSGG crystals. Crystals 2019, 9, 220. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Wang, Y.; You, Z.; Zhu, Z.; Li, J.; Tu, C. Benefit of Nd3+ ions to the ~2.7 µm emission of Er3+: 4I11/2 → 4I13/2 transition in Nd, Er: CaLaGa3O7 laser crystal. J. Lumin. 2018, 198, 40–45. [Google Scholar] [CrossRef]
- Ziolek, C.; Ernst, H.; Will, G.F.; Lubatschowski, H.; Welling, H.; Ertmer, W. High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser. Opt. Lett. 2001, 26, 599–601. [Google Scholar] [CrossRef]
- Zhang, P.; Hang, Y.; Li, Z.; Chen, Z.; Yin, H.; Zhu, S.; Fu, S.; Li, S.; Xu, M. Sensitization and deactivation effects of Nd3+ on the Ho3+: 3.9 μm emission in a PbF2 crystal. Opt. Lett. 2017, 42, 2559–2562. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.F.; Zhu, Z.J.; You, Z.Y.; Tu, C.Y. Spectroscopic properties and rate equation model of Er doped BaLaGa3O7 crystals. Mater. Res. Bull. 2018, 106, 282–287. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.F.; Zhu, Z.J.; You, Z.Y.; Tu, C.Y. Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy: BaLaGa3O7 crystals. J. Lumin. 2019, 208, 259–266. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, Y.; Zhang, Y.; Tu, C.; Xue, D. A series of Er3+-activated SrLaGa3O7 single crystal fibers for mid-infrared laser application. J. Rare Earths 2020, 38, 523–530. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Yin, H.; Zhu, S.; Li, Z.; Hang, Y.; Chen, Z. Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal. Opt. Mater. Express 2019, 9, 1698–1708. [Google Scholar] [CrossRef]
Er: 4I13/2 Lifetime (ms) | Er: 4I11/2 Lifetime (ms) | Difference (ms) | Methods | |
---|---|---|---|---|
30at.% Er: YAG (Y3Al5O12) | 7.25 | 0.1 | 7.15 | CZ |
30at.% Er: GGG (Gd3Ga5O12) | 4.86 | 0.9 | 3.96 | CZ |
20at.%,5at.%Er: LuSGG (Lu3Sc2Ga3O12) | quenched | 0.38 | / | CZ |
30at.% Er: SGGM (SrGdGa3O7) | 6.07 | 0.63 | 5.44 | CZ |
30at.% Er: YSGG | 6.05 | 1.6 | 4.45 | μ-PD |
30at.% Er: 2atNd: YSGG (this work) | 0.38 | 0.19 | 0.19 | μ-PD |
30at.% Er: 5atNd: YSGG (this work) | 0.26 | 0.18 | 0.08 | μ-PD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Wang, T.; Wang, M.; Zhang, J.; Jia, N.; Jia, Z.; Wang, Z. The Growth and Spectroscopic Properties of Er, Nd: YSGG Single Crystal Fibers. Crystals 2023, 13, 1646. https://doi.org/10.3390/cryst13121646
Wu B, Wang T, Wang M, Zhang J, Jia N, Jia Z, Wang Z. The Growth and Spectroscopic Properties of Er, Nd: YSGG Single Crystal Fibers. Crystals. 2023; 13(12):1646. https://doi.org/10.3390/cryst13121646
Chicago/Turabian StyleWu, Baiyi, Tao Wang, Meng Wang, Jian Zhang, Ning Jia, Zhitai Jia, and Zefeng Wang. 2023. "The Growth and Spectroscopic Properties of Er, Nd: YSGG Single Crystal Fibers" Crystals 13, no. 12: 1646. https://doi.org/10.3390/cryst13121646