New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquid Crystalline Crosslinker
2.2. Liquid Crystalline Elastomers
2.3. Mesomorphic Properties (DSC and POM)
2.4. 2H NMR Measurements
2.5. X-ray Diffraction
2.6. Thermo-Mechanic and Elastic Measurements
3. Results and Discussion
3.1. Mesophase Properties of the Crosslinker ‘C’
3.2. Mesophase and Structural Properties of the New SC LCEs
3.3. Thermo-Mechanic and Elastic Properties of New SC LCEs
3.4. 2H NMR Studies of the Smectic SC LCE Sample
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; Oxford University Press: Oxford, MS, USA, 2003. [Google Scholar]
- Zentel, R. Liquid Crystalline Elastomers. Angew. Chem. Int. Ed. 1989, 28, 1407. [Google Scholar] [CrossRef]
- Terentjev, E. Liquid Crystalline Elastomers. J. Cond. Matter Phys. 1999, 11, R239. [Google Scholar] [CrossRef]
- Finkelmann, H.; Kock, H.J.; Rehage, G. Investigations on Liquid-Crystalline Polysiloxanes. 3. Liquid Crystalline Elastomers—A new type of liquid-crystalline material. Makromol. Chem. Rapid Commun. 1981, 2, 317. [Google Scholar] [CrossRef]
- de Jeu, W.H. Liquid Crystal Elastomers: Materials and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Thomsen, D.L.; Keller, P.; Naciri, J.; Pink, R.; Jeon, H.; Shenoy, D.; Ratna, B.R. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 2001, 34, 5868. [Google Scholar] [CrossRef]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366. [Google Scholar] [CrossRef]
- Skacej, G.; Zannoni, C. Molecular Simulations Shed Light on Supersoft Elasticity in Polydomain Liquid Crystal Elastomers. Macromolecules 2014, 47, 8824. [Google Scholar] [CrossRef]
- Herbert, K.M.; Fowler, H.E.; McCracken, J.M.; Schlafmann, K.R.; Koch, J.A.; White, T.J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 2022, 7, 23. [Google Scholar] [CrossRef]
- de Jeu, W.H.; Ostrovskii, B.I.; Kramer, D.; Finkelmann, H. Random disorder and the smectic-nematic transition in liquid-crystalline elastomers. Phys. Rev. E 2001, 83, 041703. [Google Scholar] [CrossRef]
- Aßfalg, N.; Finkelmann, H. A smectic a liquid single crystal elastomer (LSCE): Phase behavior and mechanical anisotropy. Macromol. Chem. Phys. 2001, 202, 794. [Google Scholar] [CrossRef]
- Nishikawa, E.; Finkelmann, H. Smectic-A liquid single crystal elastomers—Strain induced break-down of smectic layers. Macromol. Chem. Phys. 1999, 200, 312. [Google Scholar] [CrossRef]
- Nishikawa, E.; Finkelmann, H.; Brand, H.R. Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity. Macromol. Rapid Commun. 1997, 18, 65. [Google Scholar] [CrossRef]
- Komp, A.; Finkelmann, H. A New Type of Macroscopically Oriented Smectic-A Liquid Crystal Elastomer. Macromol. Rapid Commun. 2007, 28, 55. [Google Scholar] [CrossRef]
- Lavric, M.; Derets, N.; Cresnar, D.; Cresta, V.; Domenici, V.; Resetic, A.; Skacej, G.; Sluban, M.; Umek, P.; Zalar, B.; et al. Tunability of the elastocaloric response in main-chain liquid crystalline elastomers. Liq. Cryst. 2021, 48, 405. [Google Scholar] [CrossRef]
- Resetic, A.; Milavec, J.; Domenici, V.; Zupancic, B.; Bubnov, A.; Zalar, B. Stress-strain and thermomechanical characterization of nematic to smectic A transition in a strongly-crosslinked bimesogenic liquid crystal elastomer. Polymer 2018, 158, 96. [Google Scholar] [CrossRef]
- Bubnov, A.; Domenici, V.; Hamplova, V.; Kaspar, M.; Zalar, B. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: Synthesis and properties. Polymer 2011, 52, 4490. [Google Scholar] [CrossRef]
- Domenici, V.; Milavec, J.; Bubnov, A.; Pociecha, D.; Zupancic, B.; Resetic, A.; Hamplova, V.; Gorecka, E.; Zalar, B. Effect of co-monomers’ relative concentration on self-assembling behaviour of side-chain liquid crystalline elastomers. RSC Adv. 2014, 4, 44056. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhao, N.; Qin, B.; Xu, J.J.; Yang, W.L.; Li, C.S.; Sun, L.G.; Zhang, J.Q.D. Ultrasonics Sonochemistry Assisted Preparation of Polysiloxane Main-Chain Liquid-Crystalline Elastomers. Macromol. Chem. Phys. 2020, 221, 2000071. [Google Scholar] [CrossRef]
- Wu, X.J.; Cao, H.; Guo, R.W.; Li, K.X.; Wang, F.F.; Yang, H. Effect of cholesteric liquid crystalline elastomer with binaphthalene crosslinkings on thermal and optical properties of a liquid crystal that show smectic A-cholesteric phase transition. Polym. Adv. Tech. 2013, 24, 228. [Google Scholar] [CrossRef]
- Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals; Wiley-Interscience: Hoboken, NJ, USA, 2009. [Google Scholar]
- Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P.; Shelley, M. Fast liquid crystal elastomer swims into the dark. Nat. Mater. 2004, 3, 307. [Google Scholar] [CrossRef]
- Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C.J.; Ikeda, T. Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47, 4986. [Google Scholar] [CrossRef]
- Shen, W.B.; Liu, J.S.; Du, B.; Zhuo, H.T.; Chen, S.J. Thermal- and light-responsive programmable shape-memory behavior of liquid crystalline polyurethanes with pendant photosensitive groups. J. Mater. Chem. A 2021, 9, 15087. [Google Scholar] [CrossRef]
- Prijatelj, M.; Ellabban, M.A.; Fally, M.; Domenici, V.; Copic, M.; Drevensek-Olenik, I. Peculiar behaviour of optical polarization gratings in light-sensitive liquid crystalline elastomers. Opt. Mater. Express 2016, 6, 961. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Q.; Setyowati, K.; Li, A.; Gong, S.Q.; Chen, J. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv. Mater. 2008, 20, 2271. [Google Scholar] [CrossRef]
- Yang, Y.K.; Zhan, W.J.; Peng, R.G.; He, C.G.; Pang, X.C.; Shi, D.; Jiang, T.; Lin, Z.Q. Graphene-Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites. Adv. Mater. 2015, 27, 6376. [Google Scholar] [CrossRef]
- Guo, H.Y.; Saed, M.O.; Terentjev, E.M. Heliotracking Device using Liquid Crystalline Elastomer Actuators. Adv. Mater. Tech. 2021, 6, 2100681. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, Y.C.; Wang, X.X.; Niu, H.Y.; Ridi, B.Y.; Shu, J.C.; Fang, X.Y.; Li, C.S.; Wang, B.S.; Gao, Y.C.; et al. A study of the microwave actuation of a liquid crystalline elastomer. Soft Matter 2020, 16, 7332. [Google Scholar] [CrossRef]
- Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2299. [Google Scholar] [CrossRef] [Green Version]
- Cresta, V.; Romano, G.; Kolpak, A.; Zalar, B.; Domenici, V. Nanostructured Composites Based on Liquid-Crystalline Elastomers. Polymers 2018, 10, 773. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Wang, X.X.; Yao, L.R.; Yan, H.X.; Qin, B.; Li, C.S.; Zhang, J.Q. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers. Soft Matter 2022, 18, 1264. [Google Scholar] [CrossRef]
- Domenici, V.; Zupancic, B.; Laguta, V.V.; Belous, A.G.; V’yunov, O.I.; Remskar, M.; Zalar, B. PbTiO3 Nanoparticles Embedded in a Liquid Crystalline Elastomer Matrix: Structural and Ordering Properties. J. Phys. Chem. C 2010, 114, 10782S. [Google Scholar] [CrossRef]
- Zupancic, B.; Zalar, B.; Remskar, M.; Domenici, V. Actuation of Gold-Coated Liquid Crystal Elastomers. Appl. Phys. Lett. 2013, 6, 021701. [Google Scholar]
- Greco, F.; Domenici, V.; Desii, A.; Sinibaldi, E.; Zupancic, B.; Zalar, B.; Mazzolai, B.; Mattoli, V. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments. Soft Matter 2013, 9, 11405. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Ji, Y. Research progress in processing methods of reversible three-dimensional structures of liquid-crystalline elastomers based on dynamic covalent bonds. Chin. J. Liq. Cryst. Disp. 2022, 37, 199. [Google Scholar] [CrossRef]
- Resetic, A.; Milavec, J.; Zupancic, B.; Domenici, V.; Zalar, B. Polymer dispersed liquid crystal elastomers. Nat. Commun. 2016, 7, 13140. [Google Scholar] [CrossRef] [Green Version]
- Ware, T.H.; McConney, M.E.; Wie, J.J.; Tondiglia, V.P.; White, T.J. Voxelated liquid crystal elastomers. Science 2015, 347, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.E.; Gallagher, S.; Terentjev, E.M.; Smoukov, S.K. Anisotropic colloidal micromuscles from liquid crystal elastomers. J. Am. Chem. Soc. 2014, 136, 474. [Google Scholar] [CrossRef]
- Stannarius, R.; Eremin, A.; Harth, K.; Morys, M.; DeMiglio, A.; Ohm, C.; Zentel, R. Mechanical and optical properties of continuously spun fibres of a main-chain smectic A elastomer. Soft Matter 2012, 8, 1858. [Google Scholar] [CrossRef]
- Bauman, G.E.; McCracken, J.M.; White, T.J. Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angew. Chem. Int. Ed. 2022, 61, e202202577. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, T.; Ambrogi, V.; Rios, O.; Xia, M.; He, W.L.; Yang, Z. Liquid Crystalline Elastomers Based on Click Chemistry. ACS Appl. Mater. Interfaces 2022, 14, 14842. [Google Scholar] [CrossRef]
- Hiraoka, K.; Ishihara, T.; Minami, H.; Taira, S.; Komesu, S.; Yamada, K. Spontaneous polarization due to flexoelectric effect in liquid crystalline elastomers prepared by cross-linking under splay distortion. Liq. Cryst. 2022, 49, 2051–2057. [Google Scholar] [CrossRef]
- Lehmann, W.; Skupin, H.; Tolksdorf, C.; Gebhard, E.; Zentel, R.; Kruger, P.; Losche, M.; Kremer, F. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 2001, 410, 447. [Google Scholar] [CrossRef]
- Ahmadpour-Samani, P.; Zahedi, P. An investigation on nematic-isotropic phase transition, viscosity and diffusion coefficient of liquid crystalline elastomers at different temperatures using molecular dynamics simulation. J. Mol. Liq. 2022, 367, 120403. [Google Scholar] [CrossRef]
- Skacej, G. Sample preparation affects the nematic-isotropic transition in liquid crystal elastomers: Insights from molecular simulation. Soft Matter 2018, 14, 1408. [Google Scholar] [CrossRef]
- Skacej, G.; Zannoni, C. Molecular simulations elucidate electric field actuation in swollen liquid crystal elastomers. Proc. Natl. Acad. Sci. USA 2012, 109, 10193. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, C.; Wagner, M.; Bhargava, N.; Ober, C.K.; Kramer, E.J. Deformation of a polydomain, smectic liquid crystalline elastomer. Macromolecules 1998, 31, 8531. [Google Scholar] [CrossRef]
- Hu, J.S.; Yang, L.Q.; Yao, D.S.; Song, Z.W. The effect of mesogenic and non-mesogenic crosslinking units on the phase behaviour of side-chain smectic and cholesteric elastomers. Liq. Cryst. 2010, 37, 1385. [Google Scholar] [CrossRef]
- Clarke, S.M.; Hotta, A.; Tajbakhsh, A.R.; Terentjev, E.M. Effect of crosslinker geometry on equilibrium thermal and mechanical properties of nematic elastomers. Phys. Rev. E 2001, 64, 061702. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.H.; Das, V.; Allen, R.W.K.; Styring, P. Monodomain liquid crystal elastomers and elastomeric gels: Improved thermomechanical responses and phase behaviour by addition of low molecular weight LCs. Mater. Chem. Phys. 2007, 104, 488. [Google Scholar] [CrossRef]
- Domenici, V. H-2 NMR studies of liquid crystal elastomers: Macroscopic vs. molecular properties. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 63, 1. [Google Scholar] [CrossRef]
- Milavec, J.; Resetic, A.; Bubnov, A.; Zalar, B.; Domenici, V. Dynamic investigations of liquid crystalline elastomers and their constituents by H-2 NMR spectroscopy. Liq. Cryst. 2018, 45, 2158. [Google Scholar] [CrossRef]
- Resetic, A.; Milavec, J.; Domenici, V.; Zupancic, B.; Bubnov, A.; Zalar, B. Deuteron NMR investigation on orientational order parameter in polymer dispersed liquid crystal elastomers. Phys. Chem. Chem. Phys. 2020, 22, 23064. [Google Scholar] [CrossRef]
- Milavec, J.; Domenici, V.; Zupancic, B.; Resetic, A.; Bubnov, A.; Zalar, B. Deuteron NMR resolved mesogen vs. crosslinker molecular order and reorientational exchange in liquid single crystal elastomers. Phys. Chem. Chem. Phys. 2016, 18, 4071. [Google Scholar] [CrossRef] [PubMed]
- Domenici, V.; Milavec, J.; Zupancic, B.; Bubnov, A.; Hamplova, V.; Zalar, B. Brief overview on 2H NMR studies of polysiloxane-based side-chain nematic elastomers. Magn. Reson. Chem. 2014, 52, 649. [Google Scholar] [CrossRef] [PubMed]
- Lebar, A.; Kutnjak, Z.; Zumer, S.; Finkelmann, H.; Sanchez-Ferrer, A.; Zalar, B. Evidence of supercritical behavior in liquid single crystal elastomers. Phys. Rev. Lett. 2005, 94, 197801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storz, R.; Komp, A.; Hoffmann, A.; Finkelmann, H. Phase Biaxility in Smectic-A Side-Chain Liquid Crystalline Elastomers. Macromol. Rapid Commun. 2009, 30, 615. [Google Scholar] [CrossRef]
- Brommel, F.; Zou, P.; Finkelmann, H.; Hoffmann, A. Influence of the mesogenic shape on the molecular dynamics and phase-biaxiality of liquid crystal main-chain polymers. Soft Matter 2013, 9, 1674. [Google Scholar] [CrossRef]
- Amigo-Melchior, A.; Finkelmann, H. A concept for bifocal contact- or intraocular lenses: Liquid single crystal hydrogels (“-LSCH”). Polym. Adv. Technol. 2002, 13, 363. [Google Scholar] [CrossRef]
- Cifelli, M.; Domenici, V.; Veracini, C.A. Recent advancements in understanding thermotropic liquid crystal structure and dynamics by means of NMR spectroscopy. Curr. Opin. Colloid Interface Sci. 2013, 18, 190. [Google Scholar] [CrossRef]
- Dong, R.Y. Recent NMR Studies of Thermotropic Liquid Crystals. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Oxford, UK, 2016; Volume 87, p. 41. [Google Scholar]
- Ghilardi, M.; Adamo, F.C.; Vita, F.; Francescangeli, O.; Domenici, V. Comparative H-2 NMR and X-ray Diffraction Investigation of a Bent-Core Liquid Crystal Showing a Nematic Phase. Crystals 2020, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, M.M.; Wróbel, J.; Jańczuk, Z.Z.; Mieczkowski, J.; Górecka, E.; Choi, J.; Cho, M.; Pociecha, D. Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers. Chem. Eur. J. 2017, 23, 8912–8920. [Google Scholar] [CrossRef]
- Kupfer, J.; Finkelmann, H. Nematic Liquid Single Crystal Elastomers. Makromol. Chem. Rapid Commun. 1991, 12, 717. [Google Scholar] [CrossRef]
- Finkelmann, H.; Kiechle, U.; Rehage, G. Behavior of liquid crystalline side chain polymers in an electric field. Mol. Cryst. Liq. Cryst. 1983, 94, 343–358. [Google Scholar] [CrossRef]
- Marini, A.; Domenici, V.; Malanga, C.; Menicagli, R.; Veracini, C.A. Synthesis of deuterium-labelled, optically active, ferroelectric liquid crystals. Tetrahedron 2010, 66, 3472–3477. [Google Scholar] [CrossRef]
- Luz, Z.; Meiboom, S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution order of the reaction with respect to solvent. J. Chem. Phys. 1963, 39, 366. [Google Scholar] [CrossRef]
- Kleinberg, R. Encyclopedia of Nuclear Magnetic Resonance; Grant, D.M., Harris, R.K., Eds.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Slichter, C.P. Principles of Magnetic Resonance, 3rd ed.; Springer: Berlin, Germany; New York, NY, USA, 1996. [Google Scholar]
- Walker, R.; Pociecha, D.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Remarkable smectic phase behaviour in odd-membered liquid crystal dimers: The CT6O.m series. J. Mater. Chem. C 2021, 9, 5167–5173. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A., Jr.; Stratmann, R.E.; Burant, J.C.; et al. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, USA, 1998. [Google Scholar]
- Cowling, S.J.; Davis, E.J.; Mandle, R.J.; Goodby, J.W. Defect textures of liquid crystals. In Progress in Liquid Crystal Science and Technology; Kwok, H.-S., Shohei, H., Ong, L., Eds.; Series in Liquid Crystals; World Scientific: Singapore, 2013; Volume 4, ISBN 978-981-4417-59-4. [Google Scholar]
- Milavec, J. Network Component-Resolved NMR Study of Ordering and Dynamics in Liquid Crystal Elastomers. Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2015. [Google Scholar]
- Mukherjee, P.K. Isotropic to smectic-A phase transition: A review. J. Mol. Liq. 2014, 190, 99. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Advances of isotropic to smectic phase transitions. J. Mol. Liq. 2021, 340, 117227. [Google Scholar] [CrossRef]
- Martinoty, P.; Stein, P.; Finkelmann, H.; Pleiner, H.; Brand, H.R. Mechanical properties of mono-domain side chain nematic elastomers. Eur. Phys. J. E 2004, 14, 311. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Effect of cross-link concentration on the isotropic to smectic—A phase transition in smectic elastomers. Phys. Scr. 2020, 95, 035224. [Google Scholar] [CrossRef]
- Obraztsov, E.P.; Muresan, A.S.; Ostrovskii, B.I.; de Jeu, W.H. Road to disorder in smectic elastomers. Phys. Rev. E 2008, 77, 021706. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Keum, J.K.; Wang, J.; Bras, W.; Kessler, M.R.; Rios, O. Multiscale Structural Characterization of a Smectic Liquid Crystalline Elastomer upon Mechanical Deformation Using Neutron Scattering. Macromolecules 2021, 54, 10574. [Google Scholar] [CrossRef]
- Kundler, I.; Nishikawa, E.; Finkelmann, H. Nematic and smectic liquid single crystal elastomers: Influence of external stress parallel and perpendicular to the director. Macromol. Symp. 1997, 117, 11. [Google Scholar] [CrossRef]
- Dong, R.Y. Nuclear Magnetic Resonance of Liquid Crystals; Springer: New York, NY, USA, 1997; ISBN 978-1-4612-1954-5. [Google Scholar]
- Veracini, C.A. NMR Spectra in Liquid Crystals; NATO ASI Series, Series C, 141; Emsley, J.W., Ed.; Reidel: Dordrecht, The Netherlands, 1985; Chapter 5. [Google Scholar]
- Domenici, V. Order and dynamics of rod-like and banana-shaped liquid crystals by H-2 NMR. Pure App. Chem. 2007, 79, 21. [Google Scholar] [CrossRef]
- Dong, R.Y. Advances in NMR studies of liquid crystals. Annu. Rep. NMR Spectrosc. 2004, 53, 68. [Google Scholar]
- Domenici, V. The role of NMR in the study of partially ordered materials: Perspectives and challenges. Pure Appl. Chem. 2011, 83, 67. [Google Scholar] [CrossRef]
- Frezzato, D.; Kothe, G.; Moro, G.J. Transverse Nuclear Spin Relaxation due to Director Fluctuations in Liquid Crystals A Slow-Motional Theory. J. Phys. Chem. B 2001, 105, 1281. [Google Scholar] [CrossRef]
m.p. | c.p. | Phase | Phase | Phase | Phase | Phase | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | 90.0 | 193.2 | Cr | 80.9 | SmJ | 136.1 | SmI | 162.7 | SmC | 191.7 | Iso |
ΔH (J/g) | 61.7 | 32.8 | 45.0 | 6.5 | 3.5 | 31.2 |
Sample Label: | Monomer, M4 (‘n’, mmol%) | Monomer M11 (‘s’, mmol%) | Crosslinker C (‘c’, mmol%) | Phase | T (°C)/[Cp (J/g °C)] | Phase | T (°C)/ [ΔH (J/g)] | Phase |
---|---|---|---|---|---|---|---|---|
SC-LCE 1 | 50 | 35 | 15 | Glass | −11.4 [0.3] | Nematic | 85.0 [2.1] | Iso |
SC-LCE 2 | 20 | 70 | 10 | Glass | −4.5 [0.40] | Smectic | 121.4 [−5.3] | Iso |
SC-LCE 2 (D) | 20 | 70 | 10 | Glass | −8.1 [0.67] | Smectic | 113.3 [−5.2] | Iso |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resetic, A.; Milavec, J.; Bubnov, A.; Pociecha, D.; Hamplova, V.; Gorecka, E.; Zalar, B.; Domenici, V. New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties. Crystals 2023, 13, 96. https://doi.org/10.3390/cryst13010096
Resetic A, Milavec J, Bubnov A, Pociecha D, Hamplova V, Gorecka E, Zalar B, Domenici V. New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties. Crystals. 2023; 13(1):96. https://doi.org/10.3390/cryst13010096
Chicago/Turabian StyleResetic, Andraz, Jerneja Milavec, Alexej Bubnov, Damian Pociecha, Vera Hamplova, Ewa Gorecka, Bostjan Zalar, and Valentina Domenici. 2023. "New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties" Crystals 13, no. 1: 96. https://doi.org/10.3390/cryst13010096
APA StyleResetic, A., Milavec, J., Bubnov, A., Pociecha, D., Hamplova, V., Gorecka, E., Zalar, B., & Domenici, V. (2023). New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties. Crystals, 13(1), 96. https://doi.org/10.3390/cryst13010096