Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers
Abstract
:1. Introduction
2. Principle of SINLT-ECSLs
3. Research Progress of SINLT-ECSLs
3.1. MRR-Integrated External Cavity Semiconductor Laser
3.2. MRR-and-MZI-Integrated External Cavity Semiconductor Lasers
4. Integration of SINLT-ECSLs
4.1. Monolithic Integrated
4.2. Heterogeneous Integration
4.3. Hybrid Integrated
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verdier, A.; de Valicourt, G.; Brenot, R.; Debregeas, H.; Dong, P.; Earnshaw, M.; Carrère, H.; Chen, Y. Ultrawideband wavelength-tunable hybrid external-cavity lasers. J. Lightwave Technol. 2017, 36, 37–43. [Google Scholar] [CrossRef]
- Tran, M.A.; Huang, D.; Guo, J.; Komljenovic, T.; Morton, P.A.; Bowers, J.E. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1500514. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration. Opt. Express 2019, 27, 2354–2362. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Xiang, C.; Chang, L.; Jin, W.; Guo, J.; Tran, M.; Bowersa, J. Low noise, tunable silicon photonic lasers. Appl. Phys. Rev. 2021, 8, 031306. [Google Scholar] [CrossRef]
- Liang, W.; Ilchenko, V.S.; Eliyahu, D.; Savchenkov, A.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 2015, 6, 7371. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Kita, T.; Yamada, H. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters. In Silicon Photonics VI; International Society for Optics and Photonics: San Francisco, CA, USA, 2011; Volume 7943. [Google Scholar]
- Bowers, J.E.; Komljenovic, T.; Srinivasan, S.; Hulme, J.; Davenport, M. A comparison of widely tunable, narrow linewidth ring cavity lasers on silicon substrates. In Proceedings of the 2015 IEEE Photonics Conference (IPC), Reston, VA, USA, 4–8 October 2015; pp. 533–534. [Google Scholar]
- Lee, J.; Bovington, J.; Shubin, I.; Luo, Y.; Yao, J.; Lin, S.; Cunningham, J.E.; Raj, K.; Krishnamoorthy, A.V.; Zheng, X. 12.2% waveguide-coupled wall plug efficiency in single mode external-cavity tunable Si/III–V hybrid laser. In Proceedings of the 2015 IEEE Optical Interconnects Conference (OI), San Diego, CA, USA, 20–22 April 2015; pp. 142–143. [Google Scholar]
- Srinivasan, S.; Davenport, M.; Komljenovic, T.; Hulme, J.; Spencer, D.T.; Bowers, J.E. Coupled-ring-resonator-mirror-based heterogeneous III–V silicon tunable laser. IEEE Photonics J. 2015, 7, 2700908. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Vasiliev, A.; Boehm, G.; van Campenhout, J.; Lepage, G.; Verheyen, P.; Baets, R.; Amann, M.; Roelkens, G. Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Res. 2018, 6, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Hulme, J.C.; Doylend, J.K.; Bowers, J.E. Widely tunable Vernier ring laser on hybrid silicon. Opt. Express 2013, 21, 19718–19722. [Google Scholar] [CrossRef]
- Ishizaka, M.; Yamazaki, H. Wavelength tunable laser using silica double ring resonators. Electron. Commun. Jpn. 2006, 89, 34–41. [Google Scholar] [CrossRef]
- Takeuchi, T.; Takahashi, M.; Suzuki, K.; Watanabe, S.; Yamazaki, H. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans. Electron. 2009, 92, 198–204. [Google Scholar] [CrossRef]
- Chu, T.; Fujioka, N.; Ishizaka, M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators. Opt. Express 2009, 17, 14063–14068. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Kita, T.; Yamada, H. Narrow spectral linewidth wavelength tunablelaser with Si photonic-wire waveguide ring resonators. In Proceedings of the 9th International Conference on Group IV Photonics (GFP), San Diego, CA, USA, 29–31 August 2012; pp. 216–218. [Google Scholar]
- Kita, T.; Nemoto, K.; Yamada, H. Narrow spectral linewidth and high output power Si photonic wavelength tunable laser diode. In Proceedings of the 10th International Conference on Group IV Photonics, Seoul, Korea, 28–30 August 2013; pp. 152–153. [Google Scholar]
- Kobayashi, N.; Sato, K.; Namiwaka, M.; Yamamoto, K.; Watanabe, S.; Kita, T.; Yamada, H.; Yamazaki, H. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightwave Technol. 2015, 33, 1241–1246. [Google Scholar] [CrossRef]
- Komljenovic, T.; Srinivasan, S.; Norberg, E.; Davenport, M.; Fish, G.; Bowers, J.E. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 214–222. [Google Scholar] [CrossRef]
- Zhao, J.L.; Oldenbeuving, R.M.; Epping, J.P.; Hoekman, M.; Heideman, R.G.; Dekker, R.; Fan, Y.; Boller, K.-J.; Ji, R.Q.; Fu, S.M.; et al. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators. In Proceedings of the 2016 IEEE 13th International Conference on Group IV Photonics (GFP), Shanghai, China, 24–26 August 2016; pp. 24–25. [Google Scholar]
- Zhang, J.; Li, Y.; Dhoore, S.; Morthier, G.; Roelkens, G. Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser. Opt. Express. 2017, 25, 7092–7100. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Novack, A.; Galfsky, T.; Ma, Y.; Fathololoumi, S.; Horth, A.; Huynh, T.N.; Roman, J.; Shi, R.; Caverley, M.; et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt. Express 2018, 26, 7920–7933. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.A.; Huang, D.; Komljenovic, T.; Liu, S.; Liang, L.; Kennedy, M.J.; Bowers, J.E. Multi-ring mirror-based narrow-linewidth widely-tunable lasers in heterogeneous silicon photonics. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018. [Google Scholar]
- Gao, Y.; Lo, J.; Lee, S.; Patel, R.; Zhu, L.; Nee, J.; Tsou, D.; Carney, R.; Sun, J. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control. J. Lightwave Technol. 2020, 38, 265–271. [Google Scholar] [CrossRef]
- Sia, J.X.B.; Wang, W.; Qiao, Z.; Li, X.; Guo, T.X.; Zhou, J.; Littlejohns, C.G.; Liu, C.; Reed, G.T.; Wang, H. Analysis of Compact Silicon Photonic Hybrid Ring External Cavity (SHREC) Wavelength-Tunable Laser Diodes Operating From 1881–1947 nm. IEEE J. Quantum Electron. 2020, 56, 2001311. [Google Scholar] [CrossRef]
- Sia, J.X.B.; Li, X.; Wang, W.; Qiao, Z.; Guo, X.; Zhou, J.; Littlejohns, C.G.; Liu, C.; Reed, G.T.; Wang, H. Sub-kHz linewidth, hybrid III-V/silicon wavelength-tunable laser diode operating at the application-rich 1647–1690 nm. Opt. Express 2020, 28, 25215–25224. [Google Scholar]
- Zhao, R.; Guo, Y.; Lu, L.; Nisar, M.S.; Chen, J.; Zhou, L. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Opt. Express 2021, 29, 10958–10966. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, R.; Zhou, G.; Lu, L.; Stroganov, A.; Nisar, M.S.; Chen, J.; Zhou, L. Thermally Tuned High-Performance III-V/Si3N4 External Cavity Laser. IEEE Photonics J. 2021, 13, 1500813. [Google Scholar] [CrossRef]
- Debregeas, H.; Ferrari, C.; Cappuzzo, M.A.; Klemens, F.; Keller, R.; Pardo, F.; Bolle, C.; Xie, C.; Earnshaw, M.P. 2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity. In Proceedings of the 2014 International Semiconductor Laser Conference, Palma de Mallorca, Spain, 7–10 September 2014; pp. 50–51. [Google Scholar]
- Kita, T.; Nemoto, K.; Yamada, H. Silicon photonic wavelength-tunable laser diode with asymmetric Mach–Zehnder interferometer. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 344–349. [Google Scholar] [CrossRef]
- Kita, T.; Tang, R.; Yamada, H. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range. Appl. Phys. Lett. 2015, 106, 111104. [Google Scholar] [CrossRef]
- Tang, R.; Kita, T.; Yamada, H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach–Zehnder interferometer. Opt. Lett. 2015, 40, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Guo, J.; Tran, M.A.; Kurczveil, G.; Liang, D.; Bowers, J.E. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photonics Res. 2020, 8, 1551–1557. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.Z.Z.; Wan, Y.; Liu, S.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 2019, 55, 2000511. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Haq, B.; Vaskasi, J.R.; Zhang, J.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G. Micro-transfer-printed III-V-on-silicon C-band distributed feedback lasers. Opt. Express 2020, 28, 32793–32801. [Google Scholar] [CrossRef] [PubMed]
- Grund, D.W.; Ejzak, G.A.; Schneider, G.J.; Murakowski, J.; Prather, D.W. Heterogenous integrated silicon-photonic module for producing widely tunable narrow linewidth RF. In Proceedings of the 2013 IEEE International Topical Meeting on Microwave Photonics (MWP), Alexandria, VA, USA, 28–31 October 2013; pp. 100–103. [Google Scholar]
- Kumari, S.; Haglund, E.P.; Gustavsson, J.S.; Larsson, A.; Roelkens, G.; Baets, R.G. Vertical-Cavity Silicon-Integrated Laser with In-Plane Waveguide Emission at 850 nm. Laser Photonics Rev. 2018, 12, 1700206. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Jin, W.; Guo, J.; Peters, J.D.; Kennedy, M.J.; Selvidge, J.; Morton, P.A.; Bowers, J.E. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 2020, 7, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Van der Slot, P.J.M.; Boller, K.J. A hybrid semiconductor-glass waveguide laser. In Laser Sources and Applications II; International Society for Optics and Photonics: Brussels, Belgium, 2004; Volume 9135, pp. 231–236. [Google Scholar]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 2006, 14, 9203–9210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zeng, S.; Zhu, L. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res. 2020, 8, 375–380. [Google Scholar] [CrossRef]
- Xu, Y.; Maier, P.; Blaicher, M.; Dietrich, P.; Marin-Palomo, P.; Hartmann, W.; Bao, Y.; Peng, H.; Billah, M.R.; Singer, S.; et al. Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Sci. Rep. 2021, 11, 16426. [Google Scholar] [CrossRef] [PubMed]
- Stern, B.; Ji, X.; Dutt, A.; Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 2017, 42, 4541–4544. [Google Scholar] [CrossRef]
- Kita, T.; Tang, R.; Yamada, H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 23–34. [Google Scholar] [CrossRef]
Laser Type | Band | λ (nm) | Tuning Range (nm) | Linewidth (kHz) | SMSR (dB) | Output Power | Year | |
---|---|---|---|---|---|---|---|---|
mW | dBm | |||||||
MRR | C, L | - | 45.2 | - | >45 | >2.9 * | >4.7 | 2006 [12] |
MRR | C, L | 1540–1636 | 96 | - | >50 | >20 * | >13 | 2009 [13] |
MRR | C, L | 1530–1610 | 38 | - | >30 | 26 | 14.1 * | 2009 [14] |
MRR | L | - | 45.1 | <100 | >40 | 18.9 | 12.8 * | 2012 [15] |
MRR | L | - | 53 | <100 | >25 | 25.1 | 14 * | 2013 [16] |
MRR | C, L | 1510–1575 | 65 | <15 | >45 | >100 * | >20 | 2014 [17] |
MRR and MZI | C, L | - | 35 | 2 | >60 | 3.2 * | 5 | 2014 [28] |
MRR and MZI | L | - | 61.7±0.2 | <100 | >38 | 42.2 | 16.3 * | 2014 [29] |
MRR | O | 1237.7–1292.4 | 54.7 | <100 | >45 | 10 | 10 * | 2015 [18] |
MRR and MZI | C, L | 1527.9–1627.1 | 99.2 | - | >29 | 35 | 15.4 * | 2015 [30] |
MRR and MZI | C, L | - | 42.7 | 12 | - | 30 | 14.8 * | 2015 [31] |
MRR | C, L | 1530–1580 | 50 | 65 | >45 | 16 | 12 * | 2016 [19] |
MRR | C, L | 1560–1600 | 40 | <1000 | 10 | >1.4 * | >1.5 | 2017 [20] |
MRR | C | - | 60 | <80 | >46 | 11 | 10.4 * | 2018 [21] |
MRR | C, L | 1557–1587 | 30 | 17.5 | >55 | 6.9 | 8.4 * | 2018 [22] |
MRR | C | - | 65 | 60 | >50 | 141.3 * | 21.5 | 2019 [23] |
MRR | - | 1881–1947 | 66 | - | 42 | 28 | 14.5 * | 2020 [24] |
MRR | - | 1647–1690 | 43 | 0.7 | 46 | 31.1 * | 14.9 | 2020 [25] |
MRR and MZI | O | - | 52 | 5.3 | 58 | 10 | 10 * | 2020 [32] |
MRR | C, L | 1524–1568 | 44 | 6.6 | >67 | 23.5 * | 13.7 | 2021 [26] |
MRR | C, L | 1516.5–1575 | 58.5 | 2.5 | >70 | 34 * | 15.3 | 2021 [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Shi, J.; Wei, L.; Ding, K.; Ma, Y.; Li, Z.; Li, L.; Qu, Y.; Qiao, Z.; Liu, G.; et al. Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers. Crystals 2022, 12, 674. https://doi.org/10.3390/cryst12050674
Li X, Shi J, Wei L, Ding K, Ma Y, Li Z, Li L, Qu Y, Qiao Z, Liu G, et al. Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers. Crystals. 2022; 12(5):674. https://doi.org/10.3390/cryst12050674
Chicago/Turabian StyleLi, Xuan, Junce Shi, Long Wei, Keke Ding, Yuhang Ma, Zaijin Li, Lin Li, Yi Qu, Zhongliang Qiao, Guojun Liu, and et al. 2022. "Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers" Crystals 12, no. 5: 674. https://doi.org/10.3390/cryst12050674
APA StyleLi, X., Shi, J., Wei, L., Ding, K., Ma, Y., Li, Z., Li, L., Qu, Y., Qiao, Z., Liu, G., & Zeng, L. (2022). Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers. Crystals, 12(5), 674. https://doi.org/10.3390/cryst12050674