Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakamura, Y.; Nakashima, S.; Ricinschi, D.; Okuyama, M. The Insertion Effect of Bi-excess Layers on Stoichiometric BiFeO3 Thin Films Prepared by Chemical Solution Deposition. Funct. Mater. Lett. 2008, 1, 19–24. [Google Scholar] [CrossRef]
- Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113. [Google Scholar] [CrossRef]
- Martin, L.W.; Chu, Y.H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy 2021, 84, 105888. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Production and applications of flexible/wearable triboelectric nanogenerator (TENGS). Synth. Met. 2021, 273, 116692. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Aerogel based nanogenerators: Production methods, characterizations and applications. Int. J. Energy Res. 2020, 44, 11088–11110. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. BaTiO3-based nanogenerators: Fundamentals and current status. J. Electroceram. 2021. [Google Scholar] [CrossRef]
- Singh, S.K.; Ishiwara, H.; Maruyama, K. Enhanced polarization and reduced leakage current in BiFeO3 thin films fabricated by chemical solution deposition. J. Appl. Phys. 2006, 100, 064102. [Google Scholar] [CrossRef]
- Kim, J.W.; Raghavan, C.M.; Kim, Y.-J.; Oak, J.-J.; Kim, H.J.; Kim, W.-J.; Kim, M.H.; Song, T.K.; Kim, S.S. Electrical properties of chemical solution deposited (Bi0.9RE0.1)(Fe0.975Cu0.025)O3-delta (RE = Ho and Tb) thin films. Ceram. Int. 2013, 39, S189–S193. [Google Scholar] [CrossRef]
- Sharma, H.B.; Singh, N.B.; Devi, K.N.; Lee, J.H.; Singh, S.B. Structural and optical properties of manganese substituted nanocrystalline bismuth ferrite thin films by sol-gel process. J. Alloys Compd. 2014, 583, 106–110. [Google Scholar] [CrossRef]
- Tang, X.; Dai, J.; Zhu, X.; Sun, Y. In situ magnetic annealing effects on multiferroic Mn-doped BiFeO3 thin films. J. Alloys Compd. 2013, 552, 186–189. [Google Scholar] [CrossRef]
- Jin, L.; Li, F.; Zhang, S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 2014, 97, 1–27. [Google Scholar] [CrossRef]
- Shi, X.X.; Liu, X.Q.; Chen, X.M. Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics. J. Appl. Phys. 2016, 119, 064104. [Google Scholar] [CrossRef]
- Noguchi, Y.; Matsuo, H.; Kitanaka, Y.; Miyayama, M. Ferroelectrics with a controlled oxygen-vacancy distribution by design. Sci. Rep. 2019, 9, 4225. [Google Scholar] [CrossRef]
- Zhang, D.H.; Shi, P.; Wu, X.Q.; Ren, W. Structural and electrical properties of sol-gel-derived Al-doped bismuth ferrite thin films. Ceram. Int. 2013, 39, S461–S464. [Google Scholar] [CrossRef]
- Xue, X.; Tan, G.; Liu, W.; Hao, H. Study on pure and Nd-doped BiFeO3 thin films prepared by chemical solution deposition method. J. Alloys Compd. 2014, 604, 57–65. [Google Scholar] [CrossRef]
- Xue, X.; Tan, G.Q. Effect of bivalent Co ion doping on electric properties of Bi0.85Nd0.15FeO3 thin film. J. Alloys Compd. 2013, 575, 90–95. [Google Scholar] [CrossRef]
- Maleki, H.; Zare, S.; Fathi, R. Effect of Nd Substitution on Properties of Multiferroic Bismuth Ferrite Synthesized by Sol-Gel Auto-combustion Method. J. Supercond. Nov. Magn. 2018, 31, 2539–2545. [Google Scholar] [CrossRef]
- Kawae, T.; Tsuda, H.; Morimoto, A. Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO3 thin films. Appl. Phys. Express 2008, 1, 051601. [Google Scholar] [CrossRef][Green Version]
- Agarwal, R.; Sharma, Y.; Hong, S.; Katiyar, R.S. Modulation of oxygen vacancies assisted ferroelectric and photovoltaic properties of (Nd, V) co-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2018, 51, 275303. [Google Scholar] [CrossRef]
- Kawae, T.; Tsuda, H.; Naganuma, H.; Yamada, S.; Kumeda, M.; Okamura, S.; Morimoto, A. Composition dependence in BiFeO3 film capacitor with suppressed leakage current by Nd and Mn cosubstitution and their ferroelectric properties. Jpn. J. Appl. Phys. 2008, 47, 7586–7589. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Chaudhuri, A.R.; Kim, Y.H.; Hesse, D.; Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 2013, 4, 2835. [Google Scholar] [CrossRef]
- Wu, J.G.; Fan, Z.; Xiao, D.Q.; Zhu, J.G.; Wang, J. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Seidel, J.; Fu, D.Y.; Yang, S.Y.; Alarcon-Llado, E.; Wu, J.Q.; Ramesh, R.; Ager, J.W. Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls. Phys. Rev. Lett. 2011, 107, 126805. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, S.; Higuchi, T.; Yasui, A.; Kinoshita, T.; Shimizu, M.; Fujisawa, H. Enhancement of photovoltage by electronic structure evolution in multiferroic Mn-doped BiFeO3 thin films. Sci. Rep. 2020, 10, 15108. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Noguchi, Y.; Miyayama, M. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 2017, 8, 207. [Google Scholar] [CrossRef]
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 2015, 9, 61–67. [Google Scholar] [CrossRef]
- Gupta, S.; Medwal, R.; Limbu, T.B.; Katiyar, R.K.; Pavunny, S.P.; Tomar, M.; Morell, G.; Gupta, V.; Katiyar, R.S. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows. Appl. Phys. Lett. 2015, 107, 062902. [Google Scholar] [CrossRef]
- Meng, Q.; Yao, K.; Liang, Y.C. Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces. Appl. Phys. Lett. 2009, 95, 233. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C. Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes. J. Appl. Phys. 2009, 105, 061624. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 2008, 93, 122904. [Google Scholar] [CrossRef]
- Shi, T.J.; Wang, J.H.; Yan, W.; Shao, X.H.; Hou, Z.L. Enhanced photovoltaic property based on reduced leakage current and band gap in Nd-doped BiFeO3 films. Mater. Res. Express 2019, 6, 086426. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, P.P.; Shi, T.J.; Shao, X.H. Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance. Thin Solid Film. 2020, 698, 137852. [Google Scholar] [CrossRef]
- Tan, K.H.; Chen, Y.W.; Van, C.N.; Wang, H.L.; Chen, J.W.; Lim, F.S.; Chew, K.H.; Zhan, Q.; Wu, C.L.; Chai, S.P.; et al. Energy Band Gap Modulation in Nd-Doped BiFeO3/SrRuO3 Heteroepitaxy for Visible Light Photoelectrochemical Activity. Acs Appl. Mater. Interfaces 2019, 11, 1655–1664. [Google Scholar] [CrossRef]
- Biswas, P.P.; Pal, S.; Subramanian, V.; Murugavel, P. Large photovoltaic response in rare-earth doped BiFeO3 polycrystalline thin films near morphotropic phase boundary composition. Appl. Phys. Lett. 2019, 114, 173901. [Google Scholar] [CrossRef]
- Wu, J.G.; Wang, J.; Xiao, D.Q.; Zhu, J.G. Mn4+:BiFeO3/Zn2+:BiFeO3 bilayered thin films of (111) orientation. Appl. Surf. Sci. 2011, 257, 7226–7230. [Google Scholar] [CrossRef]
- Qi, X.D.; Wei, M.; Lin, Y.; Jia, Q.X.; Zhi, D.; Dho, J.; Blamire, M.G.; MacManus-Driscoll, J.L. High-resolution X-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films. Appl. Phys. Lett. 2005, 86, 071913. [Google Scholar] [CrossRef]
- Li, X.A.; Wang, X.W.; Li, Y.T.; Mao, W.W.; Li, P.; Yang, T.; Yang, J.P. Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles. Mater. Lett. 2013, 90, 152–155. [Google Scholar] [CrossRef]
- Singh, M.K.; Jang, H.M.; Ryu, S.; Jo, M.H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006, 88, 042907. [Google Scholar] [CrossRef]
- Martín-Carrón, L.; de Andrés, A.; Martínez-Lope, M.J.; Casais, M.T.; Alonso, J.A. Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys. Rev. B 2002, 66, 174303. [Google Scholar] [CrossRef]
- Lobo, R.P.S.M.; Moreira, R.L.; Lebeugle, D.; Colson, D. Infrared phonon dynamics of a multiferroic BiFeO3 single crystal. Phys. Rev. B 2007, 76, 172105. [Google Scholar] [CrossRef]
- Pattanayak, S.; Choudhary, R.N.P. Synthesis, electrical and magnetic characteristics of Nd-modified BiFeO3. Ceram. Int. 2015, 41, 9403–9410. [Google Scholar] [CrossRef]
- Gu, Y.H.; Wang, Y.; Chen, F.; Chan, H.L.W.; Chen, W.P. Nonstoichiometric BiFe0.9Ti0.05O3 multiferroic ceramics with ultrahigh electrical resistivity. J. Appl. Phys. 2010, 108, 094112. [Google Scholar] [CrossRef]
- Dong, G.H.; Tan, G.Q.; Luo, Y.Y.; Liu, W.L.; Ren, H.J.; Xia, A. Investigation of Tb-doping on structural transition and multiferroic properties of BiFeO3 thin films. Ceram. Int. 2014, 40, 6413–6419. [Google Scholar] [CrossRef]
- Choudhary, R.N.P.; Perez, K.; Bhattacharya, P.; Katiyar, R.S. Structural and dielectric properties of mechanochemically synthesized BiFeO3-Ba(Zr0.6Ti0.4)O3 solid solutions. Mater. Chem. Phys. 2007, 105, 286–292. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, K.L.; Varma, G.D. Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics. Mater. Lett. 2008, 62, 1159–1161. [Google Scholar] [CrossRef]
- Arlt, G.; Hennings, D.; de With, G. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619–1625. [Google Scholar] [CrossRef]
- Saxena, P.; Kumar, A.; Sharma, P.; Varshney, D. Improved dielectric and ferroelectric properties of dual-site substituted rhombohedral structured BiFeO3 multiferroics. J. Alloys Compd. 2016, 682, 418–423. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, Y.; Lyu, S.; Cheng, Y.; Zheng, Y.; Zhong, Q.; Zhang, W.; Lyu, H. Identification of Ferroelectricity in a Capacitor With Ultra-Thin (1.5-nm) Hf0.5Zr0.5O2 Film. IEEE Electr. Device Lett. 2021, 42, 1303–1306. [Google Scholar] [CrossRef]
- Tsymbal, E.Y.; Kohlstedt, H. Applied physics—Tunneling across a ferroelectric. Science 2006, 313, 181–183. [Google Scholar] [CrossRef]
- Wen, Z.; Li, C.; Wu, D.; Li, A.; Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 2013, 12, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Kabelac, J.; Ghosh, S.; Dobal, P.; Katiyar, R. rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). J. Vac. Sci. Technol. B 2007, 25, 1049–1052. [Google Scholar] [CrossRef]
- Singh, S.K.; Kim, Y.K.; Funakubo, H.; Ishiwara, H. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 162904. [Google Scholar] [CrossRef]
- Bark, C.W.; Sharma, P.; Wang, Y.; Baek, S.H.; Lee, S.; Ryu, S.; Folkman, C.M.; Paudel, T.R.; Kumar, A.; Kalinin, S.V.; et al. Switchable Induced Polarization in LaAlO3/SrTiO3 Heterostructures. Nano Lett. 2012, 12, 1765–1771. [Google Scholar] [CrossRef]
- Strelcov, E.; Kim, Y.; Yang, J.C.; Chu, Y.H.; Yu, P.; Lu, X.; Jesse, S.; Kalinin, S.V. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. Appl. Phys. Lett. 2012, 101, 192902. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Liu, J.M.; Liu, Z.G. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 2006, 89, 052905. [Google Scholar] [CrossRef]
- Chu, Y.H.; Zhan, Q.; Yang, C.H.; Cruz, M.P.; Martin, L.W.; Zhao, T.; Yu, P.; Ramesh, R.; Joseph, P.T.; Lin, I.N.; et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 2008, 92, 102909. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.L.; Gao, R.L.; Jiang, W.H.; Deng, X.L.; Chen, G. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. J. Alloys Compd. 2014, 617, 240–246. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, X.Y.; Sheng, S.; Zhou, Y.; Liu, H.R.; Sun, Y.X. Photovoltaic mechanism in Na-substituted BiFeO3 films. J. Phys. D Appl. Phys. 2014, 47, 355104. [Google Scholar] [CrossRef]
- Guo, Y.P.; Guo, B.; Dong, W.; Li, H.; Liu, H.Z. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films. Nanotechnology 2013, 24, 275201. [Google Scholar] [CrossRef]
- Fan, Z.; Ji, W.; Li, T.; Xiao, J.X.; Yang, P.; Ong, K.P.; Zeng, K.Y.; Yao, K.; Wang, J. Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films. Acta Mater. 2015, 88, 83–90. [Google Scholar] [CrossRef]
- Gupta, S.; Tomar, M.; Gupta, V. Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films. Mater. Des. 2016, 105, 296–300. [Google Scholar] [CrossRef]
- Peng, Z.W.; Wang, Y.L.; Liu, B.T. Enhanced open circuit voltage in photovoltaic effect of polycrystalline La and Ni co-doped BiFeO3 film. Funct. Mater. Lett. 2015, 8, 1550002. [Google Scholar] [CrossRef]
- Ukai, Y.; Yamazaki, S.; Kawae, T.; Morimoto, A. Polarization-Induced Photovoltaic Effects in Nd-Doped BiFeO3 Ferroelectric Thin Films. Jpn. J. Appl. Phys. 2012, 51, 09LE10. [Google Scholar] [CrossRef][Green Version]
Samples | Light Intensity (mW cm−2) | JSC (mA cm−2) | VOC (V) | Film Thickness (nm) | References |
---|---|---|---|---|---|
Bi0.84Nd0.16Fe0.99Mn0.01O3 | 160 | 1.758 | 0.135 | 40 | This work |
Bi0.9Nd0.1FeO3 | 100 | 0.048 | 0.7 | 700 | [32] |
Bi0.95Nd0.05FeO3 | 100 | 0.035 | 0.2 | 150–190 | [34] |
BiFe0.92Ti0.08O3 | 100 | 0.020 | 0.52 | - | [58] |
Bi0.8Na0.2FeO3 | 100 | 0.001 | 0.625 | - | [59] |
Bi0.9Sr0.1FeO3−δ | 100 | 0.036 | 0.42 | 300 | [60] |
BiFe0.6Sc0.4O3 | 22.3 | 0.0065 | 0.6 | 200 | [61] |
Bi0.88Ce0.12Fe0.9Mn0.1O3 | 160 | 0.036 | 0.25 | 350 | [62] |
Bi0.95Nd0.05Fe0.97V0.03O3 | 100 | 0.0985 | 0.65 | - | [20] |
Bi0.975La0.025Fe0.975Ni0.025O3 | 5 | 0.00135 | 0.67 | 600 | [63] |
BiNd0.03FeO3 | 1000–3000 | 12.1 | 0.81 | 170 | [64] |
BiFe0.95Mn0.05O3 | 2500 | 0.015 | 3.1 | 300 | [26] |
Bi2FeCrO6 | 100 | 20.6 | 0.84 | 100 | [27] |
BiFe0.95Si0.05O3 | 100 | 23.8 | 0.45 | 650 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Song, Y.; Jia, C.; Gao, Z.; Zhang, W. Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals 2022, 12, 500. https://doi.org/10.3390/cryst12040500
Wu Q, Song Y, Jia C, Gao Z, Zhang W. Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals. 2022; 12(4):500. https://doi.org/10.3390/cryst12040500
Chicago/Turabian StyleWu, Qiyuan, Yanling Song, Caihong Jia, Zhaomeng Gao, and Weifeng Zhang. 2022. "Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3" Crystals 12, no. 4: 500. https://doi.org/10.3390/cryst12040500
APA StyleWu, Q., Song, Y., Jia, C., Gao, Z., & Zhang, W. (2022). Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals, 12(4), 500. https://doi.org/10.3390/cryst12040500