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Abstract: In this study, alumina ceramic plate microfiltration membranes (ACMs) were used for
the treatment of oily wastewater with different concentrations. The permeate oil concentration of
the system was basically less than 5 mg·L−1, and the oil rejection rate was up to 97.6%. The effects
of raw oil concentration on permeation flux and oil rejection rate of oily wastewater were studied.
The results showed that with the increase of raw oil concentration, the oil rejection rate increased
slightly due to the existence of oil film on the surface of filtered ACMs. Moreover, the existence
of oil film had little effect on the flux change of ceramic membranes. The results showed that the
permeability of ACMs mainly depended on their own oleophobic properties. In this system, physical
cleaning technology is used to remove oil droplets and particles blocked in membrane pores. The
results showed that physical cleaning could significantly recover the permeation flux as well as
improve the oil rejection rate. On this basis, a system is proposed as a potential technique for oily
wastewater treatment.

Keywords: ceramic membrane; Al2O3; oily wastewater; membrane fouling; membrane cleaning

1. Introduction

Oily wastewater is found in large volumes as a result of oil spill accidents and various
industries such as oil and gas extraction, food industry, and metal manufacturing [1,2]. It is
reported that about 250 million barrels of oily wastewater are produced every day in oil and
gas fields around the world, more than 40% of which is released into the environment [3].
In China, about 5 × 108 m3 of oilfield-produced water needs to be treated every year [4]. In
addition, oil spills are considered to be key factors affecting soil microbial communities [5].
The oil in wastewater is commonly present in four forms according to oil droplet size, in-
cluding free oil (>100 µm), dispersed oil (10–100 µm), emulsified oil (<10 µm), and dissolved
oil; among these, the rejection of emulsified oil is the most difficult [6]. The widespread
existence of emulsified oil makes it difficult to treat oily wastewater by traditional methods,
for instance, gravity separation, biological degradation, hydrocyclone, air flotation, and
the skimmers [7–10]. In addition, the treatment of oily wastewater using routine processes
renders it difficult to reach the standard of low energy consumption and high efficiency, due
to the limitations of low efficiency, high energy consumption, and secondary pollution. It
is very necessary for environmental safety and human health to develop environmentally
friendly, economical, and efficient oil-water emulsion treatment technologies.
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Membrane separation technology has gradually attracted the extensive attention of
researchers, and has played an important role in the treatment of oily wastewater because
of its low energy consumption and lack of secondary pollution [8–11]. In the process of
separating oily wastewater by membrane technology, whether water is trapped on the
membrane surface or permeated into the pores depends on the surface properties of the
membrane. Furthermore, the antifouling ability and oil-water separation efficiency of
membranes are also closely related to the surface properties of the membrane [12]. Ideally,
the dispersed phase (oil phase) remains on the membrane surface due to the screening
mechanism, while the continuous phase (water phase) enters the pore of the membrane
due to the trans-membrane pressure [13]. Based on the material type, the membranes are
classified into two groups: polymeric and ceramic. Ceramic membranes can be further
divided into tubular, hollow fiber, and plate-type membranes according to the structure of
the membrane. According to the different membrane properties and separation strategies,
membrane separation technologies include microfiltration, ultrafiltration, nanofiltration,
reverse osmosis, electrodialysis, and membrane bioreactor [14–18]. Compared with ul-
trafiltration, nanofiltration and reverse osmosis, microfiltration membrane needs lower
transmembrane pressure difference, and can be used to separate oil substances [19]. Cur-
rently, the research and applications of polymeric membranes in the treatment of oily
wastewater have relatively matured. Salahi et al. [20] studied the removal of oily wastewa-
ter using five different polymer membranes. Chen et al. [21] modified the polyethersulfone
ultrafiltration membrane and used it for oil/water separation with Pluronic F127, and
the flux of feed liquid of the modified membrane oil increased from 42.77 L·m−2 h−1 to
82.98 L·m−2 h−1. Although the organic membrane is easy to prepare and the pore size
is controllable, Padaki et al. [1] summarized the disadvantages of polymer membranes,
including the susceptibility to fouling, resulting in decreased flux and, worse, rejection.
Moreover, their rapid pollution and difficult cleaning limit the development of polymeric
membranes.

Compared with polymer membranes, ceramic membranes have advantages in the
treatment of oily wastewater owing to their easy cleaning, anti-pollution performance,
acid and alkali resistance, and higher mechanical strength [11,20,22–25]. Chen et al. [11]
studied the removal of oily wastewater by ceramic hollow fiber membrane. Li et al. [26]
used the prepared calcium feldspar ceramic membrane for microfiltration of oil-in-water
emulsion. Ebrahimi et al. [22] explored the effect of ceramic membrane on the treatment
of oily wastewater with different oil content (32–5420 ppm) using ceramic microfiltration
membrane in the pretreatment process. Son et al. [27] studied the anti-fouling effect of
internal gas injection on the treatment of agricultural industrial wastewater by plate ceramic
membrane. Although researchers have extensively studied the ceramic membrane filtration
of oily wastewater, the treatment of oily wastewater by ACMs, regeneration performance
after membrane cleaning, and related membrane fouling are rarely studied.

In this work, the oily wastewater was treated with ACMs. The morphology, microstruc-
ture and element compositions of the ACMs were characterized by scanning electron mi-
croscope (SEM) and energy dispersive spectroscopy (EDS). The changes of membrane flux
and oil rejection rate over time under different oil concentrations were studied, and the
recovery of membrane flux after physical cleaning was explored. Four membrane filtration
models were used to fit the experimental data, and the pollution models were evaluated.

2. Materials and Methods
2.1. Materials and Chemicals

Diesel was purchased from Shandong petrochemical gas station. Hexane (C6H14,
HPLC), hydrochloric acid (HCl, AR), and sodium sulfate anhydrous (Na2SO4, AR) were
purchased from Tianjin Kemio Chemical Reagent Co., Ltd. (Tianjin, China); Sodium dodecyl
sulfate (C12H25NaO4S, SDS, CP) was purchased from Yantai Far East Fine Chemical Co.,
Ltd. (Yantai, China). The above chemicals were used as received. ACMs with Al2O3
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support and separation layer was supplied by Shandong Guiyuan New Material Co.,
Ltd., China.

2.2. O/W Emulsion Separation by Ceramic Plate Microfiltration Membranes

The oily wastewater used in the experiment was prepared manually in the laboratory.
The oily wastewater consisted of 0# diesel, SDS, and distilled water. The mass ratio of 0#
diesel: SDS was 10:1. After weighting, oil and SDS were added to distilled water. The
emulsion was prepared using a blender (Shanghai Huxi Industrial Co., Ltd. (Shanghai,
China)) by mixing for 1 h at a mediated speed (5500 rpm).

The new membranes were chosen in every filtration experiment. The ceramic mem-
brane was put into the oil-in-water emulsion. The trans-membrane differential pressure
was controlled through the pump. The oil concentration in the permeation solution was
measured using an ultraviolet spectrophotometer (UV-5100B, Shanghai Yuan Analytical
Instrument Co., Ltd. (Shanghai, China)). The permeation flux and the oil concentration
were measured every 10 min. The reactor diagram is shown in Figure 1a. A diagram of the
membrane module is shown in Figure 1b.
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Figure 1. The reactor diagram of filtration apparatus (a) 1-feed tank, 2-membrane module (b) 3-
manometer, 4-regulating valve, 5-pump.

The O/W separation experiment took 120 min as a running cycle. At the end of
each concentration separation run, the membranes were cleaned using physical cleaning
technology. Physical cleaning technology refers to the removal of pollutants on the surface
of ceramic membranes by hydraulic flushing and sponge scrubbing.

2.3. Analytical Methods
2.3.1. Permeation Flux

The permeate flux (J L m−2·h−1) was calculated by dividing the permeate volume by
the membrane area and the operation time, using Equation (1) [6,8]:

J = V/At, (1)

where A (m2), V (L) and t (h) are the effective membrane area, volume of permeate, and
sampling time, respectively.

2.3.2. Rejection Percentage (%)

The separation performance of the ceramic membrane was observed by the rejec-
tion percentage of oil concentration in microfiltration processes and calculated using
Equation (2) [6,8]:

R (%) = (1 − Cp / Cf) × 100%, (2)
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where Cp (mg·L−1) and Cf (mg·L−1) represents the concentration of oil in permeate and
feed, respectively.

2.4. Membrane Characterization

Microstructures of the membrane surface were visually observed using a FEI Sirion
200 Scanning Electron Microscope (SEM). The composition of membrane support layer and
separation layer were analyzed by a FEI Sirion 200 Energy Dispersive Spectrometer (EDS).
The water contact angle on the membrane surface was characterized using the theta optical
contact angle measuring system.

2.5. Membrane Fouling Models

In order to analyze the microfiltration flux decline profile of O/W emulsion, four
blot models were used, namely cake filtration model, intermediate pore blocking model,
standard pore blocking model, and complete pore blocking model, respectively [16,28–33].
A cake filtration model is suitable for the deposition of larger than average pore size
particles on the membrane surface to form a cake filtration layer that provides an additional
porous barrier for the permeable fluid. When using the intermediate pore clogging model,
the membrane pore is considered to be not necessarily blocked by solute particles, since
solute particles are comparable in size to the membrane pore. When the solute particle size
is smaller than the membrane pore, standard pore obstruction occurs in the membrane
pore. When using this model, membrane pore blocking is considered to be caused by pore
heterogeneity. Complete pore obstruction usually occurs on the membrane surface rather
than in the membrane pores. This model is thought to be due to the fact that the size of sol
particles is larger than the membrane pores. The four pollution models are represented by
the following linear equation of membrane flux (J) and time (t), as shown in Table 1 [33,34]:

Table 1. The four pollution models [33,34].

Fouling Model Linearized Form Model Coefficient Equations

Cake filtration J−2 = J0
−2 + kc·t kc (3)

Intermediate pore blocking J−1 = J0
−1 + ki·t ki (4)

Standard pore blocking J−0.5 = J0
−0.5 + ks·t ks (5)

Complete pore blocking ln (J−1) = ln (J0
−1) + kb·t kb (6)

Where J (L·m−2·h−1), J0 (L·m−2·h−1) and t (h) represents the permeate flux of O/W
emulsion, pure water flux and sampling time, respectively.

The experimental data were fitted through the above linear form, and R2 was analyzed,
respectively.

3. Results and Discussion
3.1. Characterization and Basic Properties Test of Membranes

The membrane surface was characterized by SEM and EDS in Figure 2a,b. From the
above results, the ACMs presented the advantages of uniformity and relatively smooth
surfaces without cracks. In Figure 2b, the EDS result showed that the membrane surface
was composed of alumina. In addition to surface morphology, SEM images were also used
to observe the cross-sectional morphologies of ACMs, as shown in Figure 2c. Compared
with the intermediate support layer, the surface of each ACMs was relatively denser.
Al2O3 particles are closely arranged on the surface of the ACMs, while in the support, the
arrangement of Al2O3 particles was looser and the pore diameter was larger. From the
above results, the ACMs were composed of an alumina support layer and a denser alumina
coating. In addition, in Figure 2d, the EDS result showed that alumina is the main element
composition of the support layer. In general, combined with the result of SEM and EDS,
ACMs are composed of alumina support and dense alumina coating.
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Figure 2. SEM and EDS images of the top section (a,b) and cross-section (c,d) of the ACMs.

In order to investigate the surface wettability of ACMs, static water contact angle
under air was measured. In Figure 3a,b, the water droplets diffused rapidly after 2 s
through the surface of ACMs, perhaps due to the high-porosity surface and hydrophilicity
of the packed Al2O3 particles. In fact, in most cases, super hydrophilic surfaces also
have underwater super oleophobic properties [22]. Water molecules are trapped in rough
hydrophilic micro/nano structures with strong surface energy underwater, and oil droplets
are excluded.
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Pure water flux of selected ACMs was measured under different trans-membrane
pressures. The results are shown in Figure 4. Good linear relationships were found
between the pure water flux and the trans-membrane pressure, and attractive pure water
permeability values of 6129 L·m−2·h−1·bar−1 were obtained from the slopes in Figure 4.
The above results showed that the ceramic membranes had a good pure water permeability.
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3.2. Separation Performance

High water permeability is an excellent property of membranes for wastewater treat-
ment, which is expected to be a necessary property for the treatment of a large number
of industrial waste water. In order to evaluate the separation performance of ACMs for
oily wastewater, as a simulated mixture (SDS), a surfactant-stabilized oil in water emulsion
was prepared with oil concentrations of 30, 40, and 50 mg·L−1. The change of permeation
flux over time during the membrane filtration process of oily wastewater is shown in
Figure 5a. Within 120 min of the first filtration cycle, the initial permeation flux of the
oil in water emulsion can reach ~5399 L·m−2·h−1·bar−1. A rapid decrease in emulsion
permeability was observed in the first 30 min before the emulsion permeability reached
a relatively stable level, which was similar to the work of Yu et al. [9] After the flux be-
came stable, the ACMs simultaneously exhibited relatively high steady-state permeability
of 1071–1707 L·m−2·h−1·bar−1 and high separation efficiency of >90%. According to the
research of Hu et al. [29] and Bortot Coelho et al. [30], the flux of oily wastewater treated by
ceramic membrane is about 300–700 L·m−2·h−1·bar−1. In addition, the permeation flux in
this study was higher, and the oil removal rate was also at a higher level than other studies
in Table 2. In addition, the stable permeability of ACM with a lower feed concentration
(30 mg·L−1) was slightly higher than that ACMs with higher feed concentrations (40 and
50 mg·L−1), which may be due to reducing the feed oil concentration and reducing the
effect of pore blockage. After physical cleaning and regeneration, it was found that the
flux of ACMs under three oil concentrations recovers well, which demonstrated that the
anti-fouling property of membranes is satisfactory. The change of oil rejection rate over time
during membrane filtration of oily wastewater is shown in Figure 5b. It may be seen that the
rejection rate remained basically at more than 90% at all concentration levels. Among them,
the rejection rate under raw water concentration of 40 and 50 mg·L−1 was slightly higher
than that of 30 mg·L−1, which may be because of the higher concentration making the
membrane plug faster, resulting in better oil barrier performance. Similarly, after physical
cleaning and regeneration, it was found that its rejection rate not only recovered, but was
also higher than that of the first time. It was still considered that the filtration performance
of the blocked membrane pore was better due to the particles blocked by the membrane
pore. Interestingly, the rejection rate of 40 mg L−1 after cleaning is better than any other
concentration, which may be due to the greater thickness of the membrane separation
layer and deeper pollution than other membranes, as shown in Figure 6. At the same time,
after regeneration, the good quality separation of oil in water emulsions could be directly
observed through the transparency of the emulsions before and after filtration, as shown
in Figure 5c. No oil droplets were observed after filtration. The above result showed that
the ceramic membrane had higher permeate flux and pollutant interception properties,
as well as good anti-pollution performance. In this work, the ceramic membrane is only
recycled once. With the increase of the number of cycles, the pollution may be more serious,
resulting in the decline of membrane performance after certain cleaning.
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Table 2. Comparison of water flux and oil rejection between ACMs membrane and state-of-the-art
ceramic membranes reported in literature.

Membrane Configuration Separation
Layer

Water Permeance
(L·m–2·h–1·bar–1)

Rejection
(%) Refs.

Zirconia Plate Zirconia 250 - [27]
ZrO2/SiC tubular ZrO2 360 99.91 [30]

TiO2-Mullite Hollow fiber TiO2 150 97.0 [35]
Si3N4 Hollow fiber - 196 89.0 [36]

Mullite Plate - 129 82.7 [37]

ACMs Plate Al2O3 539.89 97.6 This
work

Characterizations of the membrane surface after cleaning may be observed in Figure 6a–c.
A thin oil film was observed on the surface of ACMs after cleaning. The SEM image of the
cross-section of ACMs after cleaning is shown in Figure 6d–f. Compared with Figure 2a,b,
the results showed that there was still a certain oil film on the surface of ACMs after cleaning.
However, combined with the previous research results, it was found that the existence of
the oil film had no significant effect on the flux. On the contrary, the existence of the oil film
improves the oil rejection rate; the existence of the oil film makes the membrane pore smaller,
which improves the interception performance of the membrane. In general, it appears that the
ACMs have good reusability.

3.3. Membrane Fouling Model Analysis

Figure 7 shows the correlation of different pore blocking models for alumina ceramic
flat films at different feed concentrations (30, 40, 50 mg·L−1). The parameters of the four
filtering models are summarized in Table 3. The complete plug model, the intermediate
pore plug model, and the cake filter model showed the best fitting effect on ACMs at three
feed concentrations (30, 40, 50 mg·L−1), respectively. Vasanth et al. [25] obtained similar
results in the study of oily wastewater treatment. Combined with previous characterization
results, the filter cake layer was indeed formed on the ceramic surface. This was considered
to be because the oil droplets were relatively small and the membrane pore size was
relatively large, so several models played a certain role in the process of membrane fouling.
In addition, according to the analysis of membrane separation performance, the existence of
oil film did not have a great impact on the flux. Combined with the contact angle analysis,
it was considered that the rejection rate of the membrane depended on the oleophobic
character of the membrane itself.

Table 3. Related parameters of different pore blocking models with different oil concentrations.

Oil Concentration
(mg·L−1)

Cake Filtration Intermediate Pore Blocking Standard
Pore Blocking Complete Pore Blocking

R2 kc
(s·m−2) J0−2× 10−5 R2 ki

(m−1) J0−1× 10−3 R2 ks
(s0.5·m0.5) J0

0.5× 10−1 R2 kb
(s−1) ln(J0−1)

30 0.950 0.977 2.11 0.990 0.996 0.34 0.995 0.998 0.08 0.989 −0.994 0.01

40 0.986 0.994 2.25 0.994 0.997 0.46 0.976 0.989 0.62 0.942 −0.973 0.10

50 0.989 0.995 2.19 0.968 0.986 2.4 0.946 0.975 1.32 0.916 −0.961 0.11
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4. Conclusions

In this paper, ACMs were successfully applied to the treatment of oily wastewater.
The results showed that the ceramic membrane had good permeation flux and good oil
rejection rate on low concentration oily wastewater. In the experimental test based on
ACMs, it was observed that the oil rejection rate was up to 97.6%. Among these results,
due to the influence of oil film at higher concentrations, the oil rejection rate of ceramic
membranes was slightly improved. In addition, the existence of oil film had little effect on
the flux of ceramic membranes. The results showed that the permeability of ACMs mainly
depends on their own oil repellency. The physical cleaning process was used to remove
reversible dirt. After physical cleaning, the membrane flux and the oil rejection rate ware
effectively recovered. In a word, the system is proposed as a potential technique for oily
wastewater treatment and may also have potential application prospects for the treatment
of heavy metal wastewater, printing and dyeing wastewater, and other pollutants.
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