Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
Experimental
3. Results and Discussion
- EDS mapping on small–scale to obtain information about the local distribution of the atoms in the annealed films (Figure 5b,d).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Kohl, M.; Gueltig, M.; Pinneker, V.; Yin, R.; Wendler, F.; Krevet, B. Magnetic shape memory microactuators. Micromachines 2014, 5, 1135–1160. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, S.; Ehsani, M.H.; Shakouri, M.; Karimi, N. Potentials of magnetic shape memory alloys for energy harvesting. J. Magn. Magn. Mater. 2021, 537, 168112. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Bruederlin, F.; Bumke, L.; Chluba, C.; Ossmer, H.; Quandt, E.; Kohl, M. Elastocaloric cooling on the miniature scale: A review on materials and device engineering. Energy Technol. 2018, 6, 1588–1604. [Google Scholar] [CrossRef]
- Kohl, M.; Fechner, R.; Gueltig, M.; Megnin, C.; Ossmer, H. Miniaturization of Shape Memory Actuators. In Proceedings of the 16th International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; pp. 1–9. [Google Scholar]
- Rodríguez-Crespo, B.; Salazar, D.; Lanceros-Méndez, S.; Chernenko, V. Development and magnetocaloric properties of Ni (Co)-Mn-Sn printing ink. J. Alloys Compd. 2022, 917, 165521. [Google Scholar] [CrossRef]
- Gao, P.; Tian, B.; Xu, J.; Tong, Y.; Chen, F.; Li, L. Investigation on porous NiMnGa alloy and its composite with epoxy resin. J. Alloys Compd. 2022, 892, 162248. [Google Scholar] [CrossRef]
- Laitinen, V.; Saren, A.; Sozinov, A.; Ullakko, K. Giant 5.8% magnetic-field-induced strain in additive manufactured Ni-Mn-Ga magnetic shape memory alloy. Scr. Mater. 2022, 208, 114324. [Google Scholar] [CrossRef]
- Ituarte, I.F.; Nilsén, F.; Nadimpalli, V.K.; Salmi, M.; Lehtonen, J.; Hannula, S.P. Towards the additive manufacturing of Ni-Mn-Ga complex devices with magnetic field induced strain. Addit. Manuf. 2022, 49, 102485. [Google Scholar] [CrossRef]
- Caputo, M.P.; Berkowitz, A.E.; Armstrong, A.; Müllner, P.; Solomon, C.V. 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit. Manuf. 2018, 21, 579–588. [Google Scholar] [CrossRef]
- Bhattacharya, K.; DeSimone, A.; Hane, K.F.; James, R.D.; Palmstrøm, C.J. Tents and tunnels on martensitic films. Mater. Sci. Eng. A 1999, 273–275, 685–689. [Google Scholar] [CrossRef]
- Dong, J.W.; Xie, J.Q.; Lu, J.; Adelmann, C.; Palmstrøm, C.J.; Cui, J.; Pan, Q.; Shield, T.W.; James, R.D.; McKernan, S. Shape memory and ferromagnetic shape memory effects in single-crystal Ni2MnGa thin films. J. Appl. Phys. 2004, 95, 2593–2600. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Heczko, O.; Buschbeck, J.; Lai, Y.W.; McCord, J.; Kaufmann, S.; Schultz, L.; Fähler, S. Stray-Field-Induced Actuation of Free-Standing Magnetic Shape-Memory Films. Adv. Mater. 2009, 21, 3708–3711. [Google Scholar] [CrossRef]
- Campanini, M.; Nasi, L.; Fabbrici, S.; Casoli, F.; Celegato, F.; Barrera, G.; Chiesi, V.; Bedogni, E.; Magén, C.; Grillo, V.; et al. Magnetic Shape Memory Turns to Nano: Microstructure Controlled Actuation of Free-Standing Nanodisks. Small 2018, 14, 1803027. [Google Scholar] [CrossRef]
- Dunand, D.C.; Müllner, P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 2011, 23, 216–232. [Google Scholar] [CrossRef]
- Wang, C.; Meyer, J.; Teichert, N.; Auge, A.; Rausch, E.; Balke, B.; Hütten, A.; Fecher, G.H.; Felser, C. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vac. Sci. Technol. B 2014, 32, 020802. [Google Scholar] [CrossRef]
- Hennel, M.; Varga, M.; Frolova, L.; Nalevanko, S.; Ibarra-Gaytán, P.; Vidyasagar, R.; Sarkar, P.; Dzubinska, A.; Galdun, L.; Ryba, T.; et al. Heusler-Based Cylindrical Micro- and Nanowires. Phys. Status Solidi A 2022, 219, 2100657. [Google Scholar] [CrossRef]
- Takhsha Ghahfarokhi, M.; Arregi, J.A.; Casoli, F.; Horký, M.; Cabassi, R.; Uhlíř, V.; Albertini, F. Microfabricated ferromagnetic-shape-memory Heuslers: The geometry and size effects. Appl. Mater. Today 2021, 23, 101058. [Google Scholar] [CrossRef]
- Eichhorn, T.; Hausmanns, R.; Jakob, G. Microstructure of freestanding single-crystalline Ni2MnGa thin films. Acta Mater. 2011, 59, 5067–5073. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, F.; Lay, C.; Aseguinolaza, I.R.; Chernenko, V.; Kohl, M. NiMnGa/Si shape memory bimorph nanoactuation. Shap. Mem. Superelasticity 2016, 2, 347–359. [Google Scholar] [CrossRef]
- Schmitt, M.; Backen, A.; Fähler, S.; Kohl, M. Development of ferromagnetic shape memory nanoactuators. In Proceedings of the 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham, UK, 20–23 August 2012; pp. 1–4. [Google Scholar]
- Arivanandhan, G.; Li, Z.; Curtis, S.; Velvaluri, P.; Quandt, E.; Kohl, M. Temperature Homogenization of Co-Integrated Shape Memory—Silicon Bimorph Actuators. Proceedings 2020, 64, 8. [Google Scholar]
- Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S. Ni-Mn-Ga shape memory nanoactuation. Appl. Phys. Lett. 2014, 104, 043111. [Google Scholar] [CrossRef]
- Lambrecht, F.; Sagardiluz, N.; Gueltig, M.; Aseguinolaza, I.R.; Chernenko, V.A.; Kohl, M. Martensitic transformation in NiMnGa/Si bimorph nanoactuators with ultra-low hysteresis. Appl. Phys. Lett. 2017, 110, 213104. [Google Scholar] [CrossRef]
- Schmitt, M.; Backen, A.; Fähler, S.; Kohl, M. Freely movable ferromagnetic shape memory nanostructures for actuation. Microelectron. Eng. 2012, 98, 536–539. [Google Scholar] [CrossRef]
- Jenkins, C.A.; Ramesh, R.; Huth, M.; Eichhorn, T.; Pörsch, P.; Elmers, H.J.; Jakob, G. Growth and magnetic control of twinning structure in thin films of Heusler shape memory compound Ni2MnGa. Appl. Phys. Lett. 2008, 93, 234101. [Google Scholar] [CrossRef]
- Mashirov, A.V.; Irzhak, A.V.; Tabachkova, N.Y.; Milovich, F.O.; Kamantsev, A.P.; Zhao, D.; Liu, J.; Kolesnikova, V.G.; Rodionova, V.V.; Koledov, V.V. Magnetostructural Phase Transition in Micro-and Nanosize Ni–Mn–Ga–Cu Alloys. IEEE Magn. Lett. 2019, 10, 1–4. [Google Scholar] [CrossRef]
- Thompson, C.V. Solid-state Dewetting of Thin Films. Annu. Rev. Mater. Res. 2012, 42, 399–434. [Google Scholar] [CrossRef]
- Leroy, F.; Borowik, Ł.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J.C.; Müller, P. How to control solid state dewetting: A short review. Surf. Sci. Rep. 2016, 71, 391–409. [Google Scholar] [CrossRef]
- Pierre-Louis, O. Solid-state wetting at the nanoscale. Prog. Cryst. Growth Charact. Mater. 2016, 62, 177–202. [Google Scholar] [CrossRef]
- Motyčková, L. Magnetic Properties of Self-Assembled FeRh Nanomagnets. Master’s Thesis, Brno University of Technology, Brno, Czech Republic, 2020. [Google Scholar]
- Barrera, G.; Celegato, F.; Cialone, M.; Coïsson, M.; Rizzi, P.; Tiberto, P. Effect of the substrate crystallinity on morphological and magnetic properties of Fe70Pd30 nanoparticles obtained by the solid-state dewetting. Sensors 2021, 21, 7420. [Google Scholar] [CrossRef]
- Andalouci, A.; Roussigné, Y.; Farhat, S.; Chérif, S.M. Magnetic and magneto-optical properties of assembly of nanodots obtained from solid-state dewetting of ultrathin cobalt layer. J. Phys. Condens. Matter 2019, 31, 495805. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Celegato, F.; Coïsson, M.; Cialone, M.; Rizzi, P.; Tiberto, P. Formation of free-standing magnetic particles by solid-state dewetting of Fe80Pd20 thin films. J. Alloys Compd. 2018, 742, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Pyatenko, A.; Lee, M. A hybrid dewetting approach to generate highly sensitive plasmonic silver nanoparticles with a narrow size distribution. Appl. Surf. Sci. 2021, 542, 148613. [Google Scholar] [CrossRef]
- Esterina, R.; Liu, X.M.; Adeyeye, A.O.; Ross, C.A.; Choi, W.K. Solid-state dewetting of magnetic binary multilayer thin films. J. Appl. Phys. 2015, 118, 144902. [Google Scholar] [CrossRef]
- Bhalla, N.; Jain, A.; Lee, Y.; Shen, A.Q.; Lee, D. Dewetting metal nanofilms—Effect of substrate on refractive index sensitivity of nanoplasmonic gold. Nanomaterials 2019, 9, 1530. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Liu, F.; Qiu, C.; Coy, E.; Liu, H.; Aperador, W.; Załęski, K.; Li, J.J.; Song, W.; Lu, Z.; et al. Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect. Mater. Horiz. 2021, 8, 912–924. [Google Scholar] [CrossRef]
- Motyčková, L.; Arregi, J.A.; Staňo, M.; Průša, S.; Částková, K.; Uhlíř, V. Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets. arXiv 2022, arXiv:2209.02469. [Google Scholar]
- Lünser, K.; Diestel, A.; Nielsch, K.; Fähler, S. Self-Patterning of Multifunctional Heusler Membranes by Dewetting. Adv. Mater. Interfaces 2021, 8, 2100966. [Google Scholar] [CrossRef]
- Diestel, A.; Neu, V.; Backen, A.; Schultz, L.; Fähler, S. Magnetic domain pattern in hierarchically twinned epitaxial Ni–Mn–Ga films. J. Phys. Condens. Matter 2013, 25, 266002. [Google Scholar] [CrossRef]
- Ranzieri, P.; Fabbrici, S.; Nasi, L.; Righi, L.; Casoli, F.; Chernenko, V.A.; Villa, E.; Albertini, F. Epitaxial Ni–Mn–Ga/MgO(100) thin films ranging in thickness from 10 to 100 nm. Acta Mater. 2013, 61, 263–272. [Google Scholar] [CrossRef]
- Ranzieri, P.; Campanini, M.; Fabbrici, S.; Nasi, L.; Casoli, F.; Cabassi, R.; Buffagni, E.; Grillo, V.; Magén, C.; Celegato, F.; et al. Achieving Giant Magnetically Induced Reorientation of Martensitic Variants in Magnetic Shape-Memory Ni–Mn–Ga Films by Microstructure Engineering. Adv. Mater. 2015, 27, 4760–4766. [Google Scholar] [CrossRef] [PubMed]
- Niemann, R.; Backen, A.; Kauffmann-Weiss, S.; Behler, C.; Rößler, U.K.; Seiner, H.; Heczko, O.; Nielsch, K.; Schultz, L.; Fähler, S. Nucleation and growth of hierarchical martensite in epitaxial shape memory films. Acta Mater. 2017, 132, 327–334. [Google Scholar] [CrossRef]
- Takhsha Ghahfarokhi, M.; Casoli, F.; Fabbrici, S.; Nasi, L.; Celegato, F.; Cabassi, R.; Trevisi, G.; Bertoni, G.; Calestani, D.; Tiberto, P.; et al. Martensite-enabled magnetic flexibility: The effects of post-growth treatments in magnetic-shape-memory Heusler thin films. Acta Mater. 2020, 187, 135–145. [Google Scholar] [CrossRef]
- Takhsha Ghahfarokhi, M.; Nasi, L.; Casoli, F.; Fabbrici, S.; Trevisi, G.; Cabassi, R.; Albertini, F. Following the martensitic configuration footprints in the transition route of Ni-Mn-Ga magnetic shape memory films: Insight into the role of twin boundaries and interfaces. Materials 2020, 13, 2103. [Google Scholar] [CrossRef] [PubMed]
- Takhsha Ghahfarokhi, M.; Chirkova, A.; Maccari, F.; Casoli, F.; Ener, S.; Skokov, K.P.; Cabassi, R.; Gutfleisch, O.; Albertini, F. Influence of martensitic configuration on hysteretic properties of Heusler films studied by advanced imaging in magnetic field and temperature. Acta Mater. 2021, 221, 117356. [Google Scholar] [CrossRef]
- Casoli, F.; Varvaro, G.; Takhsha Ghahfarokhi, M.; Fabbrici, S.; Albertini, F. Insight into the magnetisation process of martensitic Ni–Mn–Ga films: A micromagnetic and vector magnetometry study. J. Phys. Mater. 2020, 3, 045003. [Google Scholar] [CrossRef]
- Albertini, F.; Solzi, M.; Paoluzi, A.; Righi, L. Magnetocaloric properties and magnetic anisotropy by tailoring phase transitions in NiMnGa alloys. Mater. Sci. Forum 2008, 583, 169–196. [Google Scholar] [CrossRef]
- Kamarád, J.; Albertini, F.; Arnold, Z.; Casoli, F.; Pareti, L.; Paoluzi, A. Effect of hydrostatic pressure on magnetization of Ni2+xMn1−xGa alloys. J. Magn. Magn. Mater. 2005, 290, 669–672. [Google Scholar] [CrossRef]
Thickness (nm) | Dep. Rate (nm·s−1) | Temperature (K) | Composition (at. % ± 1) | TC (K) |
---|---|---|---|---|
75 | 0.06 | 573 | Ni50.0Mn18.6Ga31.4 | ~344 |
Sample | Annealing Temp. (K) | Annealing Time (min) | Composition (at. % ± 1) |
---|---|---|---|
1100_55 | 1100 | 55 | Ni55.6Mn21.0Ga23.4 |
1100_110 | 1100 | 110 | Ni62.8Mn13.3Ga23.9 |
1100_165 | 1100 | 165 | Ni71.8Mn15.1Ga13.1 |
1150_55 | 1150 | 55 | Ni60.0Mn20.4Ga19.6 |
1150_110 | 1150 | 110 | Ni62.0Mn22.3Ga15.7 |
1150_165 | 1150 | 165 | Ni62.4Mn14.3Ga23.3 |
Sample | Avg. Hole Number (μm−2) | Avg. Hole Size (μm2) | Total Hole Area (%) |
---|---|---|---|
1100_55 | 1.2 | 0.33 | 40 |
1100_110 | 1.2 | 0.24 | 28 |
1100_165 | 0.1 | 6.26 | 50 |
1150_55 | 0.7 | 0.55 | 38 |
1150_110 | NA | NA | 75 |
1150_165 | 0.4 | 0.83 | 37 |
Sample | M at 0.5 T (Am2/kg) | Mr (Am2/kg) | Hc (mT) |
---|---|---|---|
Pristine | 40.8 | ~6.2 | ~10 |
1100_55 | 1.0 | 0.2 | 18 |
1100_110 | 2.0 | 0.2 | 6 |
1100_165 | 1.7 | 0.1 | 13 |
1150_55 | 1.7 | 0.1 | 7 |
1150_110 | 3.4 | 0.4 | 6 |
1150_165 | 5.6 | 1.0 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takhsha Ghahfarokhi, M.; Celegato, F.; Barrera, G.; Casoli, F.; Tiberto, P.; Albertini, F. Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties. Crystals 2022, 12, 1826. https://doi.org/10.3390/cryst12121826
Takhsha Ghahfarokhi M, Celegato F, Barrera G, Casoli F, Tiberto P, Albertini F. Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties. Crystals. 2022; 12(12):1826. https://doi.org/10.3390/cryst12121826
Chicago/Turabian StyleTakhsha Ghahfarokhi, Milad, Federica Celegato, Gabriele Barrera, Francesca Casoli, Paola Tiberto, and Franca Albertini. 2022. "Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties" Crystals 12, no. 12: 1826. https://doi.org/10.3390/cryst12121826
APA StyleTakhsha Ghahfarokhi, M., Celegato, F., Barrera, G., Casoli, F., Tiberto, P., & Albertini, F. (2022). Dewetting Process in Ni-Mn-Ga Shape-Memory Heusler: Effects on Morphology, Stoichiometry and Magnetic Properties. Crystals, 12(12), 1826. https://doi.org/10.3390/cryst12121826