Rare Earth Ion-Doped Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) Garnet-Type Microwave Ceramics for 5G Application
Abstract
:1. Introduction
2. Experimental Process
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Du, C.; Zhou, D.; Li, R.T.; Chen, H.T.; Zhou, G.H.; Tang, B.; Darwish, M.A.; Xia, S.; Xu, Z. Fabrication of wideband low-profile dielectric patch antennas from temperature stable 0.65 CaTiO3-0.35 LaAlO3 microwave dielectric ceramic. Adv. Electron. Mater. 2022, 8, 2101414. [Google Scholar] [CrossRef]
- Shen, G.X.; Che, W.Q.; Feng, W.J.; Shi, Y.R.; Xu, F.; Xue, Q. Ultra-low-loss millimeter-wave LTCC Bandpass filters based on flexible design of lumped and distributed circuits. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1123–1127. [Google Scholar] [CrossRef]
- Wang, Z.J.; Pan, F.; Liu, L.L.; Du, Q.F.; Tang, R.T.; Ai, J.; Zhang, H.; Chen, Y. Enhanced microwave dielectric properties and sintering behaviors of Mg2SiO4-Li2TiO3-LiF ceramics by adding CaTiO3 for LTCC and GPS antenna applications. Crystals 2022, 12, 512. [Google Scholar] [CrossRef]
- Wong, S.W.; Chen, R.S.; Wang, K.; Chen, Z.N.; Chu, Q.X. U-shape slots structure on substrate integrated waveguide for 40-GHz bandpass filter using LTCC technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 5, 128–134. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, D.; Du, C.; Sun, S.K.; Pang, L.X. Temperature stable Sm(Nb1-xVx)O4 (0.0 < x < 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C 2021, 9, 9962. [Google Scholar]
- Xu, S.R.; Jiang, J.; Cheng, Z.L.; Chen, X.Y.; Sun, S.K.; Wang, D.W.; Zhang, T.J. Temperature stable, high-quality factor Li2TiO3-Li4NbO4 microwave dielectric ceramics. Crystals 2021, 11, 741. [Google Scholar] [CrossRef]
- Du, C.; Fu, M.S.; Zhou, D.; Guo, H.H.; Chen, H.T.; Zhang, J.; Wang, J.P.; Wang, S.F.; Liu, H.W.; Liu, W.F.; et al. Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications. J. Am. Ceram. Soc. 2021, 104, 4659–4668. [Google Scholar] [CrossRef]
- Zhou, H.F.; Sun, W.D.; Liu, X.B. Microwave dielectric properties of LiCa3ZnV3O12 and NaCa2Mg2V3O12 ceramics prepared by reaction-sintering. Ceram. Int. 2019, 45, 2629–2634. [Google Scholar] [CrossRef]
- Tang, Y.; Li, H.; Li, J.; Fang, L. Relationship between Rattling Mg2+ ions and anomalous microwave dielectric behavior in Ca3-xMg1+xLiV3O12 ceramics with garnet structure. J. Am. Ceram. Soc. 2021, 41, 7697–7702. [Google Scholar] [CrossRef]
- Chen, J.; Tang, Y.; Xiang, H.; Fang, L. Microwave dielectric properties and infrared reflectivity spectra analysis of two novel low-firing AgCa2B2V3O12 (B=Mg, Zn) ceramics with garnet structure. J. Am. Ceram. Soc. 2018, 38, 670–4676. [Google Scholar] [CrossRef]
- Rakhi, M.; Subodh, G. Crystal Structure and Microwave Dielectric Properties of NaPb2B2V3O12(B = Mg, Zn) Ceramics. J. Am. Ceram. Soc. 2018, 38, 4962–4966. [Google Scholar] [CrossRef]
- Jin, W.; Yin, W.; Yu, S.; Tang, M.; Xu, T.; Kang, B.; Huang, H. Microwave dielectric properties of pure YAG transparent ceramics. Mater. Lett. 2016, 173, 47–49. [Google Scholar] [CrossRef]
- Song, J.; Song, K.; Wei, J.; Lin, H.; Wu, J.; Xu, J.; Su, W.; Cheng, Z. Ionic occupation, structures, and microwave dielectric properties of Y3MgAl3SiO12 garnet-type ceramics. J. Am. Ceram. Soc. 2018, 101, 244–251. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, G.; Lu, W.; Chen, Y.; Ruan, X. Effect of the spark plasma sintering parameters, LiF additive, and Nd dopant on the microwave dielectric and optical properties of transparent YAG ceramics. J. Eur. Ceram. Soc. 2018, 36, 2767–2772. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, B.; Xiong, Z.; Zhang, X.; Zhang, S. Effects of MgO doping on microwave dielectric properties of yttrium aluminum garnet ceramics. J. Alloys Compd. 2021, 858, 158139. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, H.; Zhang, X.; Tang, B. Phase composition, microstructure, and microwave dielectric properties of non-stoichiometric yttrium aluminum garnet ceramics. J. Eur. Ceram. Soc. 2022, 42, 472–477. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, M.H.; Lim, J.B.; Nahm, S.; Paik, J.H.; Kim, J.H. Synthesis and Microwave Dielectric Properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics. J. Am. Ceram. Soc. 2007, 90, 641–644. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, M.H.; Nahm, S.; Paik, J.H.; Kim, J.H.; Lee, H.J. Microwave dielectric properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy and Yb) ceramics and effect of TiO2 on the microwave dielectric properties of Sm3Ga5O12 ceramics. J. Eur. Ceram. Soc. 2007, 27, 2865–2870. [Google Scholar] [CrossRef]
- Su, C.; Fang, L.; Ao, L.; Du, Q.; Zhai, Y.; Li, J.; Chen, J.; Tang, Y.; Liu, L. Correlation between crystal structure and microwave dielectric properties of two garnet-type ceramics in rare-earth-free gallates. J. Eur. Ceram. Soc. 2021, 41, 1962–1968. [Google Scholar] [CrossRef]
- Su, C.; Ao, L.Y.; Zhai, Y.; Zhang, Z.W.; Tang, Y. Novel low-permittivity microwave dielectric ceramics in garnet-type Ca4ZrGe3O12. Mater. Lett. 2020, 275, 128149. [Google Scholar] [CrossRef]
- Zhai, Y.F.; Tang, Y.; Lia, J.; Duan, L. Structure, Raman spectra and properties of two low-εr microwave dielectric ceramics Ca3B2Ge3O12 (B = Al, Ga). Ceram. Int. 2020, 46, 28710–28715. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.W.; Li, J.; Xua, M.Y.; Zhai, Y.F. A3Y2Ge3O12 (A = Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f. J. Eur. Ceram. Soc. 2020, 40, 3989–3995. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Zhang, Z.W.; Fang, W.S.; Ao, L.Y.; Yang, A.H.; Liu, L.J.; Fang, L. Two novel garnet Sr3B2Ge3O12 (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J. Eur. Ceram. Soc. 2021, 41, 1317–1323. [Google Scholar] [CrossRef]
- Mei, H.R.; Zhang, L.B.; Li, C.C.; Rao, Z.G.; Shu, L.L. Compositional design, structure stability, and microwave dielectric properties in Ca3MgBGe3O12 (B = Zr, Sn) garnet ceramics with tetravalent cations on B-site. Ceram. Int. 2022, 48, 4658–4664. [Google Scholar] [CrossRef]
- Kagomiya, I.; Matsuda, Y.; Kakimoto, K. Microwave dielectric properties of YAG ceramics. Ferroelectrics 2009, 387, 1–6. [Google Scholar] [CrossRef]
- Peng, S.; Zhao, C.G.; Huang, G.H.; Wang, S.J.; Xu, J.M.; Li, X.L.; Yu, S.Q. Crystal structure, sintering behavior and microwave dielectric properties of CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 17047–17053. [Google Scholar] [CrossRef]
- Jiang, S.L.; Lu, T.; Chen, J. Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG. Comput. Mater. Sci. 2013, 69, 261–266. [Google Scholar] [CrossRef]
- Wu, G.F.; Ma, M.T.; Li, A.H. Crystal structure and microwave dielectric properties of Mg2+-Si4+ co-modified yttrium aluminum garnet ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 4712–4720. [Google Scholar] [CrossRef]
- Li, C.; Hou, J.L.; Ye, Y.J. Lattice occupying sites and microwave dielectric properties of Mg2+-Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 2116–2124. [Google Scholar] [CrossRef]
- Tan, Z.Y.; Song, K.X.; Liu, B.; Lin, H.X.; Wang, D.W. The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application. Ceram. Int. 2020, 46, 15665–15669. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Gu, Y.J.; Ding, X.B.; Hu, W.; Huang, J.L.; Li, Q.; Li, L.H.; Li, X.L.; Yang, X.H.; Chen, M.; Kim, B.H. Effect of Mg/B ratio and Sr2+ substitution for Mg2+ on the sintering, phase composition and microwave dielectric properties of Mg3B2O6 ceramics. Ceram. Int. 2020, 46, 25888–25894. [Google Scholar] [CrossRef]
- Wu, S.; Song, K.X.; Liu, P.; Lin, H.X.; Zhang, F.F.; Zheng, P.; Qin, H.B. Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics. Am. Ceram. Soc. 2015, 98, 1842–1847. [Google Scholar] [CrossRef]
- Phillips, J.C. Dielectric definition of electronegativity. Phys. Rev. Lett. 1968, 20, 550–553. [Google Scholar] [CrossRef]
- Phillips, J.C.; Vechten, J.A. Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 1969, 22, 705–708. [Google Scholar] [CrossRef]
- Levine, B.F. Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 1973, 59, 1463–1486. [Google Scholar] [CrossRef]
- Wu, Z.J.; Meng, Q.B.; Zhang, S.Y. Semiempirical study on the valences of Cu and bond covalency in Y1−xCaxBa2Cu3O6+y. Phys. Rev. B 1998, 58, 958–962. [Google Scholar] [CrossRef]
- Mahan, G. Octupole modifications of the Clausius-Mossotti relation. Solid State Commun. 1980, 33, 797–800. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Lou, W.; Song, K.; Hussain, F.; Liu, B.; Bafrooei, H.B.; Lin, H.; Su, W.; Shi, F.; Wang, D. Bond characteristics and microwave dielectric properties of (Li0.5Ga0.5)2+ doped Mg2Al4Si5O18 ceramics. Ceram. Int. 2020, 46, 28631–28638. [Google Scholar] [CrossRef]
- Xiao, M.; He, S.S.; Lou, J.; Zhang, P. Structure and microwave dielectric properties of MgZr(Nb1−xSbx)2O8 (0 ≤ x ≤ 0.1) ceramics. J. Alloys Compd. 2019, 777, 350–357. [Google Scholar] [CrossRef]
- Penn, S.J.; Alford, N.M.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Brese, N.; O’keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.; Li, J.Z.; Wang, J.; Chen, H.L.; Qiao, H.Y.; Yin, X.Q.; Wang, Q.; Qi, Z.M.; Shi, F. Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba1+xMoO4 ceramics. Inorg. Chem. 2018, 57, 7121–7128. [Google Scholar] [CrossRef]
- Lou, W.C.; Song, K.X.; Hussain, F. Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn) cordierite ceramics and their application for 5G microstrip patch antenna. J. Eur. Ceram. Soc. 2022, 42, 2254–2260. [Google Scholar] [CrossRef]
- Guo, D.; Zhou, D.; Li, W.B.; Pang, L.X.; Dai, Y.Z.; Qi, Z.M. Phase evolution, crystal structure, and microwave dielectric properties of water-insoluble (1-x)LaNbO4-xLaVO4(0 ≤ x ≤ 0.9) ceramics. Inorg. Chem. 2017, 56, 9321–9329. [Google Scholar] [CrossRef]
R | Yb | Y | Dy | Eu | Sm |
---|---|---|---|---|---|
Crystal system | cubic | ||||
Space group | Ia-3d | ||||
Z | 8 | ||||
a = b = c(Å) | 12.0482 | 12.0499 | 12.0529 | 12.0589 | 12.0668 |
α = β = γ(°) | 90 | ||||
Vcell(Å3) | 1749.121 | 1749.607 | 1750.103 | 1750.623 | 1751.009 |
Calc.density(g/cm3) | 4.602 | 4.357 | 4.538 | 4.527 | 4.417 |
Rwp(%) | 9.17 | 10.5 | 9.8 | 10.1 | 9.8 |
Rp(%) χ2 Y/R-O (Å) (Al(Oct)/Mg)-O (Å) (Al(Tet)/Si)-O (Å) | 6.34 4.36 2.2932 2.4466 2.0038 1.7355 | 7.38 4.35 2.3224 2.4770 1.9881 1.7257 | 8.37 2.65 2.3002 2.4782 2.0062 1.7352 | 8.87 3.06 2.3106 2.4796 1.9894 1.7387 | 6.5 2.64 2.3329 2.4865 1.9649 1.7528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Jiang, Y.; Mao, M.; Xiu, Z.; Chi, M.; Wu, G.; Liu, B.; Wang, D.; Yang, B.; Song, K. Rare Earth Ion-Doped Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) Garnet-Type Microwave Ceramics for 5G Application. Crystals 2022, 12, 1608. https://doi.org/10.3390/cryst12111608
Ye Z, Jiang Y, Mao M, Xiu Z, Chi M, Wu G, Liu B, Wang D, Yang B, Song K. Rare Earth Ion-Doped Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) Garnet-Type Microwave Ceramics for 5G Application. Crystals. 2022; 12(11):1608. https://doi.org/10.3390/cryst12111608
Chicago/Turabian StyleYe, Zijun, Yu Jiang, Minmin Mao, Zhiyu Xiu, Mengjiao Chi, Guofa Wu, Bing Liu, Dawei Wang, Bin Yang, and Kaixin Song. 2022. "Rare Earth Ion-Doped Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) Garnet-Type Microwave Ceramics for 5G Application" Crystals 12, no. 11: 1608. https://doi.org/10.3390/cryst12111608
APA StyleYe, Z., Jiang, Y., Mao, M., Xiu, Z., Chi, M., Wu, G., Liu, B., Wang, D., Yang, B., & Song, K. (2022). Rare Earth Ion-Doped Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) Garnet-Type Microwave Ceramics for 5G Application. Crystals, 12(11), 1608. https://doi.org/10.3390/cryst12111608