Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions
Abstract
1. Introduction
2. Device Fabrication and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, E.; Guo, Z.; Li, G.; Liao, F.; Li, G.; Du, H.; Schmidt, O.G.; Kim, M.J.; Yi, Y.J.; Bao, W.; et al. Thickness-dependent electronic transport in ultrathin, single crystalline silicon nanomembranes. Adv. Electron. Mater. 2019, 5, 1900232. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, W.; Wang, G.-J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J.; et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef]
- Zhang, R.R.; Lubin, J.A.; Kuo, J.S. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef]
- Ko, H.C.; Stoykovich, M.P.; Song, J.; Malyarchak, V.; Coi, W.M.; Yu, C.-J.; Geddes, J.B., III; Xiao, J.; Wang, S.; Huang, Y.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, H.; He, X.; Hu, Y.; Zhu, E.; Gao, Y.; Liu, D.; Shi, Z.; Li, J.; Yang, Q.; et al. Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose 2020, 27, 10199–10211. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Ebnalwaled, A.A.; Thabet, A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. J. 2016, 220, 374–383. [Google Scholar] [CrossRef]
- Xu, H.; Luo, D.; Li, M.; Xu, M.; Zou, J.; Tao, H.; Lan, L.; Wang, L.; Peng, J.; Cao, Y. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2014, 2, 1255–1259. [Google Scholar] [CrossRef]
- Shin, S.-R.; Lee, H.B.; Jin, W.-Y.; Ko, K.-J.; Park, S.; Yoo, S.; Kang, J.-W. Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 2018, 6, 5444–5452. [Google Scholar] [CrossRef]
- Gupta, S.; Yogeswaran, N.; Giacomozzi, F.; Lorenzelli, L.; Dahiya, R. Touch sensor based on flexible AlN piezocapacitor coupled with MOSFET. IEEE Sens. J. 2020, 20, 6810–6817. [Google Scholar] [CrossRef]
- Cantarella, G.; Costa, J.; Meister, T.; Ishida, K.; Carta, C.; Ellinger, F.; Lugli, P.; Münzenrieder, N.; Petti, L. Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex. Print. Electron. 2020, 5, 033001. [Google Scholar] [CrossRef]
- Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Tröster, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef]
- Fan, Y.; Tu, H.; Zhao, H.; Wei, F.; Yang, Y.; Ren, T. A wearable contact lens sensor for noninvasive in-situ monitoring of intraocular pressure. Nanotechnology 2020, 32, 095106. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Won, S.M.; Orsborn, A.L.; Yu, K.J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y.; Min, S.; Woods, V.; et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Trans. Med. 2020, 12, eaay4682. [Google Scholar] [CrossRef]
- Menard, E.; Lee, K.J.; Khang, D.Y.; Nuzzo, R.G.; Rogers, J.A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398–5400. [Google Scholar] [CrossRef]
- Huang, G.S.; Mei, Y.F. Assembly and self-assembly of nanomembrane materials-from 2D to 3D. Small 2018, 14, 1703665. [Google Scholar] [CrossRef]
- Menard, E.; Nuzzo, R.G.; Rogers, J.A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 2005, 86, 093507. [Google Scholar] [CrossRef]
- Yuan, H.C.; Ma, Z.Q. Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 2006, 89, 212105. [Google Scholar] [CrossRef]
- Zhang, L.R.; Xiao, W.P.; Wu, W.J.; Liu, B.Q. Research progress on flexible oxide-based thin film transistors. Appl. Sci. 2019, 9, 773. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Xiao, W.; Liu, C.; Chen, J.; Guo, M.; Gao, H.; Liu, B.; Wu, W. Strategies for applications of oxide-based thin film transistors. Electronics 2022, 11, 960. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, D.; Yoo, H. Recent advances in metal-oxide thin-film transistors: Flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 2022, 12, 204. [Google Scholar] [CrossRef]
- Bahubalindruni, P.G.; Martins, J.; Santa, A.; Tavares, V.; Martins, R.; Fortunato, E.; Barquinha, P. High-gain transimpedance amplifier for flexible radiation dosimetry using InGaZnO TFTs. IEEE J. Electron Devices Soc. 2018, 6, 760–765. [Google Scholar] [CrossRef]
- Qin, G.; Zuo, K.; Seo, J.-H.; Xu, Y.; Yuan, H.-C.; Liu, H.; Huang, Z.; Ma, J.; Ma, Z. On the bending characterization of flexible radio-frequency single-crystalline germanium diodes on a plastic substrate. Appl. Phys. Lett. 2015, 106, 043504. [Google Scholar] [CrossRef]
- Chen, W.P.N.; Su, P.; Goto, K.I. Investigation of coulomb mobility in nanoscale strained PMOSFETs. IEEE Trans. Nanotechnol. 2008, 7, 538–543. [Google Scholar] [CrossRef]
- Liu, J.L.; Yang, X.D.; Ma, Z.Q.; Qin, G.X. On the operation mechanism of the flexible diodes under mechanical bending conditions. J. Phys. D Appl. Phys. 2020, 53, 45LT01. [Google Scholar] [CrossRef]
- Lee, T.I.; Jo, W.; Kim, W.; Kim, J.H.; Paik, K.W.; Kim, T.S. Direct visualization of cross-sectional strain distribution in flexible devices. ACS Appl. Mater. Interfaces 2019, 11, 13416–13422. [Google Scholar] [CrossRef]
- Qin, G.; Yang, L.; Seo, J.-H.; Yuan, H.-C.; Celler, G.K.; Ma, J.; Ma, Z. Experimental characterization and modeling of the bending strain effect on flexible microwave diodes and switches on plastic substrate. Appl. Phys. Lett. 2011, 99, 243104. [Google Scholar] [CrossRef]
- Chen, K.-M.; Huang, G.-W.; Chen, B.-Y.; Chiu, C.-S.; Hsiao, C.-H.; Liao, W.-S.; Chen, M.-Y.; Yang, Y.-C.; Wang, K.-L.; Liu, C.W. LDMOS transistor high-frequency performance enhancements by strain. IEEE Electron Device Lett. 2012, 33, 471–473. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Bong, J.H.; Kim, D.J.; Kim, C.S.; Choi, H.; Hwang, W.S.; Cho, B.J. Performance degradation of flexible Si nanomembrane transistors with Al2O3 and SiO2 dielectrics under mechanical stress. IEEE Trans. Electron Devices 2018, 65, 3069–3072. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Huang, W.-C.; Wang, H.-H.; Cheng, C.-C.; Liu, C.-Y.; Chiang, M.-F. P-10: A study on bending tolerance of hybrid IGZO TFTs fabricated on PEN Films. Sid Symp. Dig. Tech. Pap. 2018, 1, 1219–1222. [Google Scholar] [CrossRef]
- Munzenrieder, N.; Ishida, K.; Meister, T.; Cantarella, G.; Petti, L.; Carta, C.; Ellinger, F.; Troster, G. Flexible InGaZnO TFTs with fmax above 300 MHz. IEEE Electron Device Lett. 2018, 39, 1310–1313. [Google Scholar] [CrossRef]
- Qin, G.X.; Yuan, H.C.; Celler, G.K.; Ma, J.G.; Ma, Z.Q. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate. Appl. Phys. Lett. 2011, 99, 153106. [Google Scholar] [CrossRef]
- Li, H.; Guo, L.; Loh, W.; Bera, L.; Zhang, Q.; Hwang, N.; Liao, E.; Teoh, K.; Chua, H.; Shen, Z.; et al. Bendability of single-crystal Si MOSFETs investigated on flexible substrate. IEEE Electron Device Lett. 2006, 27, 538–541. [Google Scholar] [CrossRef]
- Cho, M.; Seo, J.H.; Park, D.W.; Zhou, W.D.; Ma, Z.Q. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions. Appl. Phys. Lett. 2016, 108, 233505. [Google Scholar] [CrossRef]
- Kao, H.L.; Yeh, C.S.; Chen, M.T.; Chiu, H.C.; Chang, L.C. Characterization and reliability of nMOSFETs on flexible substrates under mechanical strain. Microelectron. Rel. 2012, 52, 999–1004. [Google Scholar] [CrossRef]
- Qin, G.X.; Seo, J.H.; Zhang, Y. RF Characterization of gigahertz flexible silicon thin-film transistor on plastic substrates under bending conditions. IEEE Electron Device Lett. 2013, 34, 262–264. [Google Scholar] [CrossRef]
- Asadirad, M.; Pouladi, S.; Shervin, S.; Oh, S.K.; Lee, K.H.; Kim, J.; Lee, S.-N.; Gao, Y.; Dutta, P.; Selvamanickam, V.; et al. Numerical simulation for operation of flexible thin-film transistors with bending. IEEE Electron Device Lett. 2017, 38, 217–220. [Google Scholar] [CrossRef]
- Bennett, N.S.; Cowern, N.E.B.; Sealy, B.J. Model for electron mobility as a function of carrier concentration and strain in heavily doped strained silicon. Appl. Phys. Lett. 2009, 94, 252109. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.L.; Belford, R.E.; Wernersson, L.E.; Seabaugh, A. Partially depleted SOI MOSFETs under uniaxial tensile strain. IEEE Trans. Electron Devices 2004, 51, 317–323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Lan, K.; Ma, Z.; Qin, G. Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals 2022, 12, 1609. https://doi.org/10.3390/cryst12111609
Ye H, Lan K, Ma Z, Qin G. Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals. 2022; 12(11):1609. https://doi.org/10.3390/cryst12111609
Chicago/Turabian StyleYe, Haotian, Kuibo Lan, Zhenqiang Ma, and Guoxuan Qin. 2022. "Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions" Crystals 12, no. 11: 1609. https://doi.org/10.3390/cryst12111609
APA StyleYe, H., Lan, K., Ma, Z., & Qin, G. (2022). Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals, 12(11), 1609. https://doi.org/10.3390/cryst12111609