Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions
Abstract
:1. Introduction
2. Device Fabrication and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, E.; Guo, Z.; Li, G.; Liao, F.; Li, G.; Du, H.; Schmidt, O.G.; Kim, M.J.; Yi, Y.J.; Bao, W.; et al. Thickness-dependent electronic transport in ultrathin, single crystalline silicon nanomembranes. Adv. Electron. Mater. 2019, 5, 1900232. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, W.; Wang, G.-J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J.; et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.R.; Lubin, J.A.; Kuo, J.S. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.C.; Stoykovich, M.P.; Song, J.; Malyarchak, V.; Coi, W.M.; Yu, C.-J.; Geddes, J.B., III; Xiao, J.; Wang, S.; Huang, Y.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, H.; He, X.; Hu, Y.; Zhu, E.; Gao, Y.; Liu, D.; Shi, Z.; Li, J.; Yang, Q.; et al. Flexible electronic skin sensor based on regenerated cellulose/carbon nanotube composite films. Cellulose 2020, 27, 10199–10211. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [Green Version]
- Ebnalwaled, A.A.; Thabet, A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. J. 2016, 220, 374–383. [Google Scholar] [CrossRef]
- Xu, H.; Luo, D.; Li, M.; Xu, M.; Zou, J.; Tao, H.; Lan, L.; Wang, L.; Peng, J.; Cao, Y. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2014, 2, 1255–1259. [Google Scholar] [CrossRef]
- Shin, S.-R.; Lee, H.B.; Jin, W.-Y.; Ko, K.-J.; Park, S.; Yoo, S.; Kang, J.-W. Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 2018, 6, 5444–5452. [Google Scholar] [CrossRef]
- Gupta, S.; Yogeswaran, N.; Giacomozzi, F.; Lorenzelli, L.; Dahiya, R. Touch sensor based on flexible AlN piezocapacitor coupled with MOSFET. IEEE Sens. J. 2020, 20, 6810–6817. [Google Scholar] [CrossRef] [Green Version]
- Cantarella, G.; Costa, J.; Meister, T.; Ishida, K.; Carta, C.; Ellinger, F.; Lugli, P.; Münzenrieder, N.; Petti, L. Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex. Print. Electron. 2020, 5, 033001. [Google Scholar] [CrossRef]
- Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Tröster, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Tu, H.; Zhao, H.; Wei, F.; Yang, Y.; Ren, T. A wearable contact lens sensor for noninvasive in-situ monitoring of intraocular pressure. Nanotechnology 2020, 32, 095106. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Won, S.M.; Orsborn, A.L.; Yu, K.J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y.; Min, S.; Woods, V.; et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Trans. Med. 2020, 12, eaay4682. [Google Scholar] [CrossRef] [Green Version]
- Menard, E.; Lee, K.J.; Khang, D.Y.; Nuzzo, R.G.; Rogers, J.A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398–5400. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.S.; Mei, Y.F. Assembly and self-assembly of nanomembrane materials-from 2D to 3D. Small 2018, 14, 1703665. [Google Scholar] [CrossRef]
- Menard, E.; Nuzzo, R.G.; Rogers, J.A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 2005, 86, 093507. [Google Scholar] [CrossRef]
- Yuan, H.C.; Ma, Z.Q. Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 2006, 89, 212105. [Google Scholar] [CrossRef]
- Zhang, L.R.; Xiao, W.P.; Wu, W.J.; Liu, B.Q. Research progress on flexible oxide-based thin film transistors. Appl. Sci. 2019, 9, 773. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Xiao, W.; Liu, C.; Chen, J.; Guo, M.; Gao, H.; Liu, B.; Wu, W. Strategies for applications of oxide-based thin film transistors. Electronics 2022, 11, 960. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, D.; Yoo, H. Recent advances in metal-oxide thin-film transistors: Flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 2022, 12, 204. [Google Scholar] [CrossRef]
- Bahubalindruni, P.G.; Martins, J.; Santa, A.; Tavares, V.; Martins, R.; Fortunato, E.; Barquinha, P. High-gain transimpedance amplifier for flexible radiation dosimetry using InGaZnO TFTs. IEEE J. Electron Devices Soc. 2018, 6, 760–765. [Google Scholar] [CrossRef]
- Qin, G.; Zuo, K.; Seo, J.-H.; Xu, Y.; Yuan, H.-C.; Liu, H.; Huang, Z.; Ma, J.; Ma, Z. On the bending characterization of flexible radio-frequency single-crystalline germanium diodes on a plastic substrate. Appl. Phys. Lett. 2015, 106, 043504. [Google Scholar] [CrossRef]
- Chen, W.P.N.; Su, P.; Goto, K.I. Investigation of coulomb mobility in nanoscale strained PMOSFETs. IEEE Trans. Nanotechnol. 2008, 7, 538–543. [Google Scholar] [CrossRef]
- Liu, J.L.; Yang, X.D.; Ma, Z.Q.; Qin, G.X. On the operation mechanism of the flexible diodes under mechanical bending conditions. J. Phys. D Appl. Phys. 2020, 53, 45LT01. [Google Scholar] [CrossRef]
- Lee, T.I.; Jo, W.; Kim, W.; Kim, J.H.; Paik, K.W.; Kim, T.S. Direct visualization of cross-sectional strain distribution in flexible devices. ACS Appl. Mater. Interfaces 2019, 11, 13416–13422. [Google Scholar] [CrossRef]
- Qin, G.; Yang, L.; Seo, J.-H.; Yuan, H.-C.; Celler, G.K.; Ma, J.; Ma, Z. Experimental characterization and modeling of the bending strain effect on flexible microwave diodes and switches on plastic substrate. Appl. Phys. Lett. 2011, 99, 243104. [Google Scholar] [CrossRef]
- Chen, K.-M.; Huang, G.-W.; Chen, B.-Y.; Chiu, C.-S.; Hsiao, C.-H.; Liao, W.-S.; Chen, M.-Y.; Yang, Y.-C.; Wang, K.-L.; Liu, C.W. LDMOS transistor high-frequency performance enhancements by strain. IEEE Electron Device Lett. 2012, 33, 471–473. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Bong, J.H.; Kim, D.J.; Kim, C.S.; Choi, H.; Hwang, W.S.; Cho, B.J. Performance degradation of flexible Si nanomembrane transistors with Al2O3 and SiO2 dielectrics under mechanical stress. IEEE Trans. Electron Devices 2018, 65, 3069–3072. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Huang, W.-C.; Wang, H.-H.; Cheng, C.-C.; Liu, C.-Y.; Chiang, M.-F. P-10: A study on bending tolerance of hybrid IGZO TFTs fabricated on PEN Films. Sid Symp. Dig. Tech. Pap. 2018, 1, 1219–1222. [Google Scholar] [CrossRef]
- Munzenrieder, N.; Ishida, K.; Meister, T.; Cantarella, G.; Petti, L.; Carta, C.; Ellinger, F.; Troster, G. Flexible InGaZnO TFTs with fmax above 300 MHz. IEEE Electron Device Lett. 2018, 39, 1310–1313. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.X.; Yuan, H.C.; Celler, G.K.; Ma, J.G.; Ma, Z.Q. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate. Appl. Phys. Lett. 2011, 99, 153106. [Google Scholar] [CrossRef]
- Li, H.; Guo, L.; Loh, W.; Bera, L.; Zhang, Q.; Hwang, N.; Liao, E.; Teoh, K.; Chua, H.; Shen, Z.; et al. Bendability of single-crystal Si MOSFETs investigated on flexible substrate. IEEE Electron Device Lett. 2006, 27, 538–541. [Google Scholar] [CrossRef]
- Cho, M.; Seo, J.H.; Park, D.W.; Zhou, W.D.; Ma, Z.Q. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions. Appl. Phys. Lett. 2016, 108, 233505. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.L.; Yeh, C.S.; Chen, M.T.; Chiu, H.C.; Chang, L.C. Characterization and reliability of nMOSFETs on flexible substrates under mechanical strain. Microelectron. Rel. 2012, 52, 999–1004. [Google Scholar] [CrossRef]
- Qin, G.X.; Seo, J.H.; Zhang, Y. RF Characterization of gigahertz flexible silicon thin-film transistor on plastic substrates under bending conditions. IEEE Electron Device Lett. 2013, 34, 262–264. [Google Scholar] [CrossRef]
- Asadirad, M.; Pouladi, S.; Shervin, S.; Oh, S.K.; Lee, K.H.; Kim, J.; Lee, S.-N.; Gao, Y.; Dutta, P.; Selvamanickam, V.; et al. Numerical simulation for operation of flexible thin-film transistors with bending. IEEE Electron Device Lett. 2017, 38, 217–220. [Google Scholar] [CrossRef]
- Bennett, N.S.; Cowern, N.E.B.; Sealy, B.J. Model for electron mobility as a function of carrier concentration and strain in heavily doped strained silicon. Appl. Phys. Lett. 2009, 94, 252109. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.L.; Belford, R.E.; Wernersson, L.E.; Seabaugh, A. Partially depleted SOI MOSFETs under uniaxial tensile strain. IEEE Trans. Electron Devices 2004, 51, 317–323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Lan, K.; Ma, Z.; Qin, G. Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals 2022, 12, 1609. https://doi.org/10.3390/cryst12111609
Ye H, Lan K, Ma Z, Qin G. Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals. 2022; 12(11):1609. https://doi.org/10.3390/cryst12111609
Chicago/Turabian StyleYe, Haotian, Kuibo Lan, Zhenqiang Ma, and Guoxuan Qin. 2022. "Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions" Crystals 12, no. 11: 1609. https://doi.org/10.3390/cryst12111609
APA StyleYe, H., Lan, K., Ma, Z., & Qin, G. (2022). Operation Mechanisms of Flexible RF Silicon Thin Film Transistor under Bending Conditions. Crystals, 12(11), 1609. https://doi.org/10.3390/cryst12111609