Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications
Abstract
1. Introduction
2. Device Structure
3. Modeling and Assumptions
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Datta, D.; Behin-Aein, B.; Datta, S.; Salahuddin, S. Voltage Asymmetry of Spin-Transfer Torques. IEEE Trans. Nanotechnol. 2011, 11, 261–272. [Google Scholar] [CrossRef]
- Dincer, O.; Naeemi, A. Spin Transport Modeling Tool. 2017. Available online: https://nanohub.org/resources/spintransport (accessed on 25 August 2022).
- Park, H.; Shin, D.-S.; Yu, H.-S.; Chae, H.-B. Electron mobility in tris (8-hydroxyquinoline) aluminum (Alq3) films by transient electroluminescence from single layer organic light emitting diodes. Appl. Phys. Lett. 2007, 90, 202103. [Google Scholar] [CrossRef]
- Halls, M.D.; Schlegel, H.B. Molecular Orbital Study of the First Excited State of the OLED Material Tris (8-hydroxyquinoline) aluminum (III). Chem. Mater. 2001, 13, 2632–2640. [Google Scholar] [CrossRef]
- Sito, J.; Grodzicki, M.; Lament, K.; Wasielewski, R.; Mazur, P.; Ciszewski, A. Electronic Properties of Structures Containing Films of Alq3 and LiBr Deposited on Si (111) Crystal. Acta Phys. Pol. A 2017, 132, 357–359. [Google Scholar] [CrossRef]
- Fong, H.H.; So, S.K. Hole transporting properties of tris (8-hydroxyquinoline) aluminum Alq3. J. Appl. Phys. 2006, 100, 094502. [Google Scholar] [CrossRef]
- Rashid, A.N.; Craig, D.C. Growth and Crystal Structure of Alq3 Single Crystals. A new structure showing π-π and CH-π interactions. Mrs Online Proc. Libr. 2004, 829, 393–401. [Google Scholar] [CrossRef]
- Groves, C. Simulating charge transport in organic semiconductors and devices: A review. Rep. Prog. Phys. 2016, 80, 026502. [Google Scholar] [CrossRef] [PubMed]
- Kanchibotla, B.; Pramanik, S.; Bandyopadhyay, S.; Cahay, M. Transverse spin relaxation time in organic molecules. Phys. Rev. B 2008, 78, 193306. [Google Scholar] [CrossRef]
- Bobbert, P.A.; Wagemans, W.; van Oost, F.W.A.; Koopmans, B.; Wohlgenannt, M. Theory for Spin Diffusion in Disordered Organic Semiconductors. Phys. Rev. Lett. 2009, 102, 156604. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Valentin, C.D. Band Gap in Magnetite above Verwey Temperature Induced by Symmetry Breaking. J. Phys. Chem. C 2017, 121, 25736. [Google Scholar] [CrossRef]
- Bhatt, M.A.; Bhatt, P.J. Comparative analysis of dielectric strength and electron velocity in transformer oil based nanofluid. J. Eng. Sci. Technol. 2021, 16, 1167–1182. [Google Scholar]
- Brojabasi, S.; Muthukumaran, T.; Laskar, J.M.; Philip, J. The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids. Opt. Commun. 2014, 336, 278–285. [Google Scholar] [CrossRef]
- Deb, D.; Dey, P. Modeling of Temperature-Dependent Sign Reversal of Magnetoresistance in 99.95% La0.7Sr0.3MnO3–0.05% Paraffin Wax Nanocomposite: The Role of Pinning Center at Intergrain Defect Site. Phys. Stat. Solid. B 2019, 257, 1900402. [Google Scholar] [CrossRef]
- Deb, D.; Dey, P.; Choudhary, R.J.; Rawat, R.; Banerjee, A. Temperature dependent transition of conduction mechanism from carrier injection to multistep tunneling in Fe3O4 (111)/Alq3/Co organic spin valve. Org. Electron. 2021, 99, 106324. [Google Scholar] [CrossRef]
- Ganguly, S.; Datta, D.; Shang, C.; Ramadas, S.; Salahuddin, S.; Datta, S. Magnetic Tunnel Junction Lab. 2014. Available online: https://nanohub.org/resources/mtjlab (accessed on 25 August 2022).
- Barati, E.; Cinal, M.; Edwards, D.M.; Umerski, A. Gilbert damping in magnetic layered systems. Phys. Rev. B 2014, 90, 014420. [Google Scholar] [CrossRef]
- Liang, S.; Geng, R.; Yang, B.; Zhao, W.; Subedi, R.C.; Li, X.; Han, X.; Nguyen, T.D. Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves. Sci. Rep. 2016, 6, 19461. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Vardeny, Z.V. Organic spin valves: The first organic spintronics devices. J. Mater. Chem. 2008, 19, 1685–1690. [Google Scholar] [CrossRef]
- Deb, D.; Nath, D.; Choudhary, R.J.; Roy, J.N.; Dey, P. Magneto-tunable photoresponse in ZnO-rGO/La0.7Sr0.3MnO3/ITO heterostructure: An opto-spintronic phenomenon. Phys. Lett. A 2022, 446, 128271. [Google Scholar] [CrossRef]
- Zhang, Q.; Chan, K.S.; Li, J. Spin-transfer torque generated in graphene based topological insulator heterostructures. Sci. Rep. 2018, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Devkota, J.; Geng, R.; Subedi, R.C.; Nguyen, T.D. Organic Spin Valves: A Review. Adv. Funct. Mater. 2016, 26, 3881–3898. [Google Scholar] [CrossRef]
- Tobin, J.G.; Morton, S.A.; Yu, S.W.; Waddill, G.D.; Schuller, I.K.; Chambers, S.A. Spin resolved photoelectron spectroscopy of Fe3O4: The case against half-metallicity. J. Phys. Condens. Matter. 2007, 19, 315218. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Nath, T.K. Effect of grain size modulation on the magneto-and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B 2006, 73, 214425. [Google Scholar] [CrossRef]
- Bruno, F.Y.; Grisolia, M.N.; Visani, C.; Valencia, S.; Varela, M.; Abrudan, R.; Tornos, J.; Rivera-Calzada, A.; Unal, A.A.; Pennycook, S.J.; et al. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat. Commun. 2015, 6, 6306. [Google Scholar] [CrossRef] [PubMed]
- Madon, B.; Kang, H.B.; Kang, M.G.; Maurya, D.; Magill, B.A.; Alves, M.J.P.; Wehrowe, J.-E.; Drouhin, H.-J.; Priya, S.; Khodaparast, G.A. Room temperature ferromagnetic resonance in hetero-epitaxial BTO-BFO/LSMO magnetoelectric composite. AIP Adv. 2018, 8, 105034. [Google Scholar] [CrossRef]
- Xiong, Z.H.; Wu, D.; Vardeny, Z.V.; Shi, J. Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, A.; Guo, L.; Liu, Y.; Sun, X.; Guo, Y. Organic Semiconductors for Room-Temperature Spin Valves. ACS Mater. Lett. 2022, 4, 805–814. [Google Scholar] [CrossRef]
- Majumdar, S.; Majumdar, H.S. Decay in spin diffusion length with temperature in organic semiconductors—An insight of possible mechanisms. Synth. Met. 2013, 173, 26–30. [Google Scholar] [CrossRef]
- Jang, H.-J.; Richter, C.A. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering. Adv. Mater. 2016, 29, 1602739. [Google Scholar] [CrossRef] [PubMed]
- Poggini, L.; Cucinotta, G.; Pradipto, A.-M.; Scarrozza, M.; Barone, P.; Caneschi, A.; Graziosi, P.; Calbucci, M.; Cecchini, R.; Dediu, V.A.; et al. An Organic Spin Valve Embedding a Self-Assembled Monolayer of Organic Radicals. Adv. Mater. Interfaces 2016, 3, 1500855. [Google Scholar] [CrossRef]
- Van Schijndel, M.J.M. Novel Experimental and Modeling Approaches to Organic Spin-Valves. Master’s Thesis, University of Technology, Eindhoven, The Netherlands, 2010. [Google Scholar]
- Shi, S. Theory and Modeling for Organic Spintronics and Electronics. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2017. [Google Scholar]
- Goswami, A.; Yunus, M.; Ruden, P.P.; Smith, D.L. Magneto-resistance of organic spin valves due to spin-polarized tunnel injection and extraction of charge carriers. J. Appl. Phys. 2012, 111, 034505. [Google Scholar] [CrossRef]
- Lian, H.; Cheng, X.; Hao, H.; Han, J.; Lau, M.-T.; Li, Z.; Zhou, Z.; Dong, O.; Wong, W.-Y. Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 2022, 51, 1926–1982. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Luo, X.; Liu, L.; Wang, D.; Zhao, X.; Wang, Z.; Xue, X.; Zhang, F.; Xing, G. All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing. Micromachines 2022, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Rakheja, S.; Chang, S.-C.; Naeemi, A. Impact of Dimensional Scaling and Size Effects on Spin Transport in Copper and Aluminum Interconnects. IEEE Trans. Electron. Devices 2013, 60, 3913–3919. [Google Scholar] [CrossRef]
- Sharkas, K.; Pritchard, B.; Autschbach, J. Effects from Spin–Orbit Coupling on Electron-Nucleus Hyperfine Coupling Calculated at the Restricted Active Space Level for Kramers Doublet. J. Chem. Theory Comput. 2014, 11, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Geng, H.; Yin, S.; Shuai, Z.; Peng, J. First-principle Band Structure Calculations of Tris(8-hydroxyquinolinato) aluminum. J. Phys. Chem. B 2006, 110, 3180–3184. [Google Scholar] [CrossRef] [PubMed]
- Droghetti, A.; Thielen, P.; Rungger, I.; Haag, N.; Gromann, N.; Stockl, J.; Stadtmuller, B.; Aeschlimann, M.; Sanvito, S.; Cinchetti, M. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat. Commun. 2016, 7, 12668. [Google Scholar] [CrossRef]
Model Parameters | Alq | FeO |
---|---|---|
Fermi Energy Level (eV) | 4.8 | 5.2 |
Bulk Mean Free Path (m) | 15.88 × 10 | 750 × 10 |
Bulk Resistivity (ohm m) | 1 × 10 | 0.2 |
Electron Density (m) | 2 × 10 | 5.8 × 10 |
Fermi Velocity (m/s) | 1.2 × 10 | 1.1 × 10 |
Spin Flip Probability (Phonons) | 0.1 | 0.4 |
Spin Flip Probability (defects) | 7 × 10 | 1 × 10 |
Grain Scattering Coefficient | 0.5 | 0.3 |
Sidewall Scattering Coefficient | 0.1 | 0.08 |
Model Parameters | Change with (Decreasing Temperature) | Deviation of MR (Decreasing Temperature) |
---|---|---|
Bulk Mean Free Path | Decrease | Decrease |
Bulk Resistivity | Increase | Decrease |
Electron Density | Decrease | Increase |
Fermi Velocity (m/s) | Decrease | No change |
Spin Flip Probability (Phonons) | Decrease | Increase |
Spin Flip Probability (defects) | Increase | Decrease |
Model Parameters | FeO Device | LSMO Device |
---|---|---|
Area of FeO/LSMO (nm) | 6400 | 6400 |
Free Layer Co Thickness (nm) | 10 | 10 |
Saturation Magnetization (M) | 90 | 750 |
Damping Coefficient () | 0.01 | 0.02 |
Easy axis anisotropic field (H, Oe) | 50 | 50 |
Demagnetizing Field (H, Oe) | 1000 | 200 |
Alq barrier height (eV) | 4.6 | 4.6 |
Alq spacer effective mass | 0.16 | 0.16 |
Spin split Fermi level for FeO/LSMO (eV) | 1.53 | 1.5 |
FeO/LSMO effective mass | 0.38 | 0.32 |
FeO/LSMO Fermi level (eV) | 5.2 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, D.; Mahajan, B.K. Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications. Crystals 2022, 12, 1411. https://doi.org/10.3390/cryst12101411
Deb D, Mahajan BK. Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications. Crystals. 2022; 12(10):1411. https://doi.org/10.3390/cryst12101411
Chicago/Turabian StyleDeb, Debajit, and Bikram Kishore Mahajan. 2022. "Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications" Crystals 12, no. 10: 1411. https://doi.org/10.3390/cryst12101411
APA StyleDeb, D., & Mahajan, B. K. (2022). Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications. Crystals, 12(10), 1411. https://doi.org/10.3390/cryst12101411