High-Energy Heavy Ion Tracks in Nanocrystalline Silicon Nitride
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.W.; Joung, C.Y.; Kim, S.H.; Lee, S.C. Inert matrix fuel—A new challenge for material technology in the nuclear fuel cycle. Met. Mater. Int. 2001, 7, 159–164. [Google Scholar] [CrossRef]
- Yamane, J.; Imai, M.; Yano, T. Fabrication and basic characterization of silicon nitride ceramics as an inert matrix. Prog. Nucl. Energy 2008, 50, 621–624. [Google Scholar] [CrossRef]
- Degueldre, C.; Paratte, J.M. Concepts for an inert matrix fuel, an overview. J. Nucl. Mater. 1999, 274, 1–6. [Google Scholar] [CrossRef]
- Daraszewicz, S.L.; Duffy, D.M. Extending the inelastic thermal spike model for semiconductors and insulators. Nucl. Instrum. Methods Phys. Res. B 2011, 269, 1646–1649. [Google Scholar] [CrossRef]
- Cureton, W.F.; Palomares, R.I.; Walters, J.; Tracy, C.L.; Chen, C.-H.; Ewing, R.C.; Baldinozzi, G.; Lian, J.; Trautmann, C.; Lang, M. Grain size effects on irradiated CeO2, ThO2, and UO2. Acta Mater. 2018, 160, 47–56. [Google Scholar] [CrossRef]
- Shen, T.D.; Feng, S.; Tang, M.; Valdez, J.A.; Wang, Y.; Sickafus, K.E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 2007, 90, 263115. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, J.; Fuentes, A.F.; Zhang, F.; Lang, M.; Lu, F.; Ewing, R.C. Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. Appl. Phys. Lett. 2009, 94, 243110. [Google Scholar] [CrossRef]
- Nita, N.; Schaeublin, R.; Victoria, M. Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 2004, 329–333, 953–957. [Google Scholar] [CrossRef]
- Liu, W.; Ji, Y.; Tan, P.; Zang, H.; He, C.; Yun, D.; Zhang, C.; Yang, Z. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review. Materials 2016, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, A.; Hémon, S.; Gourbilleau, F.; Dufour, C.; Dooryhée, E.; Paumier, E. Nanometric size effects on irradiation of tin oxide powder. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1998, 146, 437–442. [Google Scholar] [CrossRef]
- Grover, V.; Shukla, R.; Kumari, R.; Mandal, B.P.; Kulriya, P.K.; Srivastava, S.K.; Ghosh, S.; Tyagi, A.K.; Avasthi, D.K. Effect of grain size and microstructure on radiation stability of CeO2: An extensive study. Phys. Chem. Chem. Phys. 2014, 16, 27065–27073. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, T.; Morita, Y.; Nakajima, K.; Narumi, K.; Saitoh, Y.; Matsuda, M.; Sataka, M.; Tsujimoto, M.; Isoda, S.; Toulemonde, M.; et al. Formation of ion tracks in amorphous silicon nitride films with MeV C60 ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 356, 22–27. [Google Scholar] [CrossRef]
- Komarov, F.F. Nano- and microstructuring of solids by swift heavy ions. Phys. Usp. 2017, 60, 435–471. [Google Scholar] [CrossRef]
- Canut, B.; Ayari, A.; Kaja, K.; Deman, A.-L.; Lemiti, M.; Fave, A.; Souifi, A.; Ramos, S. Ion-induced tracks in amorphous Si3N4 films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 2819–2823. [Google Scholar] [CrossRef]
- Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; et al. Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide. Nanotechnology 2018, 29, 144004. [Google Scholar] [CrossRef] [Green Version]
- Vlasukova, L.A.; Komarov, F.F.; Yuvchenko, V.N.; Skuratov, V.A.; Didyk, A.Y.; Plyakin, D.V. Ion tracks in amorphous silicon nitride. Bull. Russ. Acad. Sci. Phys. 2010, 74, 206–208. [Google Scholar] [CrossRef]
- Vlasukova, L.; Komarov, F.; Yuvchenko, V.; Baran, L.; Milchanin, O.; Dauletbekova, A.; Alzhanova, A.; Akilbekov, A. Etching of latent tracks in amorphous SiO2 and Si3N4: Simulation and experiment. Vacuum 2016, 129, 137–141. [Google Scholar] [CrossRef]
- Morita, Y.; Nakajima, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Ishikawa, N.; Hojou, K.; Tsujimoto, M.; Isoda, S.; Kimura, K. Surface effect on ion track formation in amorphous Si3N4 films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 315, 142–145. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Skuratov, V.A.; Hoelzer, D.T. On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 191, 758–766. [Google Scholar] [CrossRef]
- Janse van Vuuren, A.; Ibrayeva, A.; Skuratov, V.; Zdorovets, M. Analysis of the microstructural evolution of silicon nitride irradiated with swift Xe ions. Ceram. Int. 2020, 46, 7155–7160. [Google Scholar] [CrossRef]
- Janse Van Vuuren, A.; Ibrayeva, A.; Rymzhanov, R.A.; Zhalmagambetova, A.; O’Connell, J.H.; Skuratov, V.A.; Uglov, V.V.; Zlotski, S.V.; Volkov, A.E.; Zdorovets, M. Latent tracks of swift Bi ions in Si3N4. Mater. Res. Express 2020, 7, 025512. [Google Scholar] [CrossRef]
- Janse van Vuuren, A.; Ibrayeva, A.; Skuratov, V.A.; Zdorovets, M.V. iTS Model-Based Analysis of Track Formation in Crystalline and Amorphous Silicon Nitride. In Proceedings of the 13th International Conference of the Interaction of Radiation with Solids, Minsk, Belarus, 30 September–3 October 2019; pp. 97–99. [Google Scholar]
- Sigrist, A.; Balzer, R. Untersuchungen zur Bildung von Tracks in Kristallen. Helv. Phys. Acta 1977, 50, 49–64. [Google Scholar] [CrossRef]
- Komarov, F.F.; Vlasukova, L.A.; Kuchinskyi, P.V.; Didyk, A.Y.; Skuratov, V.A.; Voronova, N.A. Etched track morphology in SiO2 irradiated with swift heavy ions. Lith. J. Phys. 2009, 49, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Janse van Vuuren, A.; Skuratov, V.; Ibrayeva, A.; Zdorovets, M. Microstructural Effects of Al Doping on Si3N4 Irradiated with Swift Heavy Ions. Acta Phys. Pol. A 2019, 136, 241–244. [Google Scholar] [CrossRef]
- Rymzhanov, R.A.; Volkov, A.E.; Zhalmagambetova, A.; Zhumazhanova, A.; Skuratov, V.; Dauletbekova, A.K.; Akilbekov, A.T. Modelling of track formation in nanocrystalline inclusions in Si3N4. J. Appl. Phys. 2022, 132, 085903. [Google Scholar] [CrossRef]
- Ishikawa, N.; Taguchi, T.; Ogawa, H. Comprehensive Understanding of Hillocks and Ion Tracks in Ceramics Irradiated with Swift Heavy Ions. Quantum Beam Sci. 2020, 4, 43. [Google Scholar] [CrossRef]
Ion/Energy (MeV) | Stopping Power (keV/nm) | State of Ion Tracks |
---|---|---|
131Xe/156 | 12.3 ± 0.8 | No Tracks |
131Xe/156 | 14.7 ± 0.8 | Small particles and boundaries of large particles only |
209Bi/670 | 14.5 ± 1.1 | Defect structures |
209Bi/714 | 16.5 ± 1.2 | No Tracks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janse van Vuuren, A.; Mutali, A.; Ibrayeva, A.; Sohatsky, A.; Skuratov, V.; Akilbekov, A.; Dauletbekova, A.; Zdorovets, M. High-Energy Heavy Ion Tracks in Nanocrystalline Silicon Nitride. Crystals 2022, 12, 1410. https://doi.org/10.3390/cryst12101410
Janse van Vuuren A, Mutali A, Ibrayeva A, Sohatsky A, Skuratov V, Akilbekov A, Dauletbekova A, Zdorovets M. High-Energy Heavy Ion Tracks in Nanocrystalline Silicon Nitride. Crystals. 2022; 12(10):1410. https://doi.org/10.3390/cryst12101410
Chicago/Turabian StyleJanse van Vuuren, Arno, Alisher Mutali, Anel Ibrayeva, Alexander Sohatsky, Vladimir Skuratov, Abdirash Akilbekov, Alma Dauletbekova, and Maxim Zdorovets. 2022. "High-Energy Heavy Ion Tracks in Nanocrystalline Silicon Nitride" Crystals 12, no. 10: 1410. https://doi.org/10.3390/cryst12101410
APA StyleJanse van Vuuren, A., Mutali, A., Ibrayeva, A., Sohatsky, A., Skuratov, V., Akilbekov, A., Dauletbekova, A., & Zdorovets, M. (2022). High-Energy Heavy Ion Tracks in Nanocrystalline Silicon Nitride. Crystals, 12(10), 1410. https://doi.org/10.3390/cryst12101410