Mechanical Properties of Pack Carburized SCM 420 Steel Processed Using Natural Shell Powders and Extended Carburization Time
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase and Chemical Composition of Carburizing Media and Specimens
3.2. Surface Hardness of Carburized and Quenched SCM 420 Specimens
3.3. Microhardness Profiles of Carburized and Quenched SCM 420 Specimens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kong, J.H.; Okumiya, M.; Tsunekawa, Y.; Takeda, T.; Yun, K.Y.; Yoshida, M.; Kim, S.G. Surface Modification of SCM420 Steel by Plasma Electrolytic Treatment. Surf. Coat. Technol. 2013, 232, 275–282. [Google Scholar] [CrossRef]
- Kazuaki, F.; Kunikazu, T.; Tetsuo, S. Examination of Surface Hardening Process for Dual Phase Steel and Improvement of Gear Properties. JFE GIHO 2009, 23, 24–29. [Google Scholar]
- Jeong, Y.E.; Lee, J.Y.; Lee, E.K.; Shim, D.S. Microstructures and Mechanical Properties of Deposited Fe-8Cr-3V-2Mo-2W on SCM420 Substrate Using Directed Energy Deposition and Effect of Post-Heat Treatment. Materials 2021, 14, 1231. [Google Scholar] [CrossRef] [PubMed]
- Natpukkana, P.; Pakinsee, S.; Boonmapat, S.; Mitsomwang, P.; Borrisutthekul, R.; Panuwannakorn, R.; Khoa-phong, L. Investigation of Notch Shear Cutting for JIS SCM420 Steel Wire Rod. IOP Conf. Ser. Mater. Sci. Eng. 2018, 436, 012013. [Google Scholar] [CrossRef]
- Chang, Y.-P.; Wang, H.-Y.; Chou, H.-M. A Novel Application on the Drive Elements of Using Electrical Contact Resistance and Friction Coefficient for Evaluating Induction Heat Treatment. Materials 2021, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Drozd, K.; Walczak, M.; Szala, M.; Gancarczyk, K. Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials 2020, 13, 4895. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, C.; Xing, Z.; Wang, H.; Huang, Y.; Guo, W.; Liu, H. Study of the Catalytic Strengthening of a Vacuum Carburized Layer on Alloy Steel by Rare Earth Pre-Implantation. Materials 2019, 12, 3420. [Google Scholar] [CrossRef] [Green Version]
- Raja, M.A.; Mishra, M.R. A Study of Optimization and Improvement of Mechanical Properties of Low Carbon Steel by the Process of Carburization. Int. J. Eng. Tech. Res. IJETR 2019, 9, 2454–4698. [Google Scholar] [CrossRef]
- Prime, M.B.; Prantil, V.C.; Rangaswamy, P.; García, F.P. Residual Stress Measurement and Prediction in a Hardened Steel Ring. Mater. Sci. Forum 2000, 347, 223–228. [Google Scholar] [CrossRef]
- Oyetunji, A.; Adeosun, S.O. Effects of Carburizing Process Variables on Mechanical and Chemical Properties of Carburized Mild Steel. J. Basic Appl. Sci. 2012, 8, 319–324. [Google Scholar] [CrossRef]
- Levitas, V.I.; Roy, A.M.; Preston, D.L. Multiple Twinning and Variant-Variant Transformations in Martensite: Phase-Field Approach. Phys. Rev. B 2013, 88, 54113. [Google Scholar] [CrossRef] [Green Version]
- Levitas, V.I.; Roy, A.M. Multiphase Phase Field Theory for Temperature- and Stress-Induced Phase Transformations. Phys. Rev. B 2015, 91, 174109. [Google Scholar] [CrossRef] [Green Version]
- Benarioua, Y. Effect of Temperature and Time of Carburizing Treatment on the Structure and the Hardness of Steel 20MC4. Int. J. Sustain. Water Environ. Syst. 2016, 8, 3–6. [Google Scholar]
- Madu, K.; Uyaelumuo, A.E. Parametric Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel. SSRN Electron. J. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Aramide, F.O.; Ibitoye, S.A.; Oladele, I.O.; Borode, J.O. Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon as Carburizer. Mater. Res. 2009, 12, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Abdulrazzaq, D.M.A. Investigation the Mechanical Properties of Carburized Low Carbon Steel. Int. J. Eng. Res. Appl. 2016, 6, 59–64. [Google Scholar]
- Ahamad, N.W.; Jauhari, I.; Azis, S.A.A.; Aziz, N.H.A. Surface Properties and Activation Energy of Superplastically Carburized Duplex Stainless Steel. Mater. Chem. Phys. 2010, 122, 454–458. [Google Scholar] [CrossRef]
- Singh, R. Investigation of Optimal Process Parameters for Mechanical and Wear Properties of Carburized Mild Steel Using Taguchi Approach. Int. J. Eng. Sci. Adv. Res. 2015, 1, 90–92. [Google Scholar]
- Asrofi, M.; Hidayatulloh, M.A.; Jatisukamto, G.; Sutjahjono, H.; Sakura, R.R. The Effect of Temperature and Volume Fraction of Mahoni (Swietenia Mahogani) Wood Charcoal on SS400 Steel Using Pack Carburizing Method: Study of Hardness and Microstructure Characteristics. AIMS Mater. Sci. 2020, 7, 354–363. [Google Scholar] [CrossRef]
- Negara, D.N.K.P.; Muku, I.D.M.K.; Sugita, I.K.G.; Astika, I.M.; Mustika, I.W.; Prasetya, D.G.R. Hardness Distribution and Effective Case Depth of Low Carbon Steel after Pack Carburizing Process under Different Carburizer. Appl. Mech. Mater. 2015, 776, 201–207. [Google Scholar] [CrossRef]
- Soenoko, R.; Siswanto, E.; Widodo, T.D. Influence of Reheating in Pack Carburizing Process with Bamboo Charcoal and Cow Bone Powder Media for Hardness Number and Impact Strength Low Carbon Steel. Int. J. Appl. Eng. Res. 2018, 13, 2078–2083. [Google Scholar]
- Umunakwe, R.; Okoye, O.C.; Madueke, C.I.; Komolafe, D.O. Effects of Carburization with Palm Kernel Shell/Coconut Shell Mixture on the Tensile Properties and Case Hardness of Low Carbon Steel. FUOYE J. Eng. Technol. 2017, 2, 101–105. [Google Scholar] [CrossRef]
- Syahid, M.; Hayat, A.; Arief, S. Fatigue Strength Improvement of Low Carbon Steel through Carburizing Process with Coconut Shell Charcoal. IOP Conf. Ser. Mater. Sci. Eng. 2020, 875, 012064. [Google Scholar] [CrossRef]
- Sebayang, M.D. ST37 Steel Carburization with Coconut Charcoal. J. Technomater. Phys. 2021, 3, 29–35. [Google Scholar] [CrossRef]
- Hassan, K.S. Comparative of Wear Resistance of Low Carbon Steel Pack Carburizing Using Different Media. Int. J. Eng. Technol. 2015, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Darmo, S.; Soenoko, R.; Siswanto, E.; Widodo, T.D. Study on Mechanical Properties of Pack Carburizing SS400 Steel with Energizer Pomacea Canalikulata Lamarck Shell Powder. Int. J. Mech. Eng. Technol. 2018, 9, 14–23. [Google Scholar]
- Soenoko, R.; Siswanto, E.; Widodo, T.D. Study on Fatigue Strength of Pack Carburizing Steel SS400 with Alternative Carburizer Media of Pomacea Canalikulata Lamarck Shell Powder. Int. J. Appl. Eng. Res. 2018, 13, 8844–8849. [Google Scholar]
- Aramide, F.O.; Ibitoye, S.A.; Oladele, I.O.; Borode, J.O. Pack Carburization of Mild Steel, Using Pulverized Bone as Carburizer: Optimizing Process Parameters. Leonardo Electron. J. Pract. Technol. 2010, 16, 1–12. [Google Scholar]
- Negara, D.N.K.P.; Widiyarta, I.M. The Study on Mechanical Properties of Pack Carburized Low Carbon Steel Using BaCO3 as Energizer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 673, 012125. [Google Scholar] [CrossRef] [Green Version]
- Rajaguguk, T.O.; Sumardi, S. The Study of Low Carbon Steel Pack Carburizing Using Cow Bone and Coconut Shell. IOP Conf. Ser. Mater. Sci. Eng. 2019, 478, 012037. [Google Scholar] [CrossRef]
- Ramli; Wu, C.-C. Novel Study on Mechanical Properties of Pack Carburizing SCM 420 Steel with Energizer Dog Conch. Int. J. Mod. Phys. B 2021, 35, 2150065. [Google Scholar] [CrossRef]
- Demir, M.; Kahveci, Z.; Aksoy, B.; Palapati, N.K.R.; Subramanian, A.; Cullinan, H.T.; El-Kaderi, H.M.; Harris, C.T.; Gupta, R.B. Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin. Ind. Eng. Chem. Res. 2015, 54, 10731–10739. [Google Scholar] [CrossRef]
- Wang, S.-C. Fine Activated Carbon from Rubber Fruit Shell Prepared by Using ZnCl2 and KOH Activation. Appl. Sci. 2021, 11, 3994. [Google Scholar] [CrossRef]
- Bharatham, H.; Zakaria, M.Z.A.B.; Perimal, E.K.; Yusof, L.M.; Hamid, M. Mineral and Physiochemical Evaluation of Cockle Shell (Anadara granosa) and Other Selected Molluscan Shell as Potential Biomaterials. Sains Malays. 2014, 43, 1023–1029. [Google Scholar]
JCPDS | Relative Concentration of Carburizing Media | Lattice Constant | Standard Values (Å) | Calculated Values (Å) |
---|---|---|---|---|
Orthorhombic Aragonite (CaCO3) JCPDS 71-2396 | 100% DCSP | a | 4.961 | 4.946 |
b | 7.970 | 7.884 | ||
c | 5.739 | 5.717 | ||
CSP:DCSP ratio of 90%:10% | a | 4.961 | 4.998 | |
b | 7.970 | 7.937 | ||
c | 5.739 | 5.430 | ||
CSP:DCSP ratio of 80%:20% | a | 4.961 | 4.972 | |
b | 7.970 | 7.921 | ||
c | 5.739 | 5.917 | ||
CSP:DCSP ratio of 70%:30% | a | 4.961 | 4.967 | |
b | 7.970 | 7.909 | ||
c | 5.739 | 5.704 | ||
CSP:DCSP ratio of 60%:40% | a | 4.961 | 4.960 | |
b | 7.970 | 7.981 | ||
c | 5.739 | 5.765 | ||
CSP:DCSP ratio of 50%:50% | a | 4.961 | 4.951 | |
b | 7.970 | 7.897 | ||
c | 5.739 | 5.382 |
Specimen | JCPDS | Lattice Constant | Standard Values (Å) | Calculated Values (Å) |
---|---|---|---|---|
Original SCM 420 raw material | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.870 |
SCM 420 carburized specimens with 40% DCSP for 3 h | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.865 |
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.029 | |
b | 6.743 | 6.601 | ||
c | 4.523 | 4.564 | ||
SCM 420 carburized specimens with 40% DCSP for 6 h | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.870 |
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.044 | |
b | 6.743 | 6.684 | ||
c | 4.523 | 4.526 | ||
SCM 420 carburized specimens with 40% DCSP for 12 h | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.874 |
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.043 | |
b | 6.743 | 6.670 | ||
c | 4.523 | 4.526 | ||
SCM 420 carburized specimens with 40% DCSP for 3 h after quenching | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.848 |
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.076 | |
b | 6.743 | 6.712 | ||
c | 4.523 | 4.501 | ||
SCM 420 carburized specimens with 40% DCSP for 6 h after quenching | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.887 |
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.112 | |
b | 6.743 | 6.921 | ||
c | 4.523 | 4.557 | ||
SCM 420 carburized specimens with 40% DCSP for 12 h after quenching | Body centered cubic Iron, syn (Fe) JCPDS 6-696 | a = b = c | 2.886 | 2.848 |
Carbon (C) JCPDS 50-1083 | a | 2.522 | 2.497 | |
c | 12.35 | 12.201 | ||
Orthorhombic Iron carbide (Fe3C) JCPDS 65-2412 | a | 5.089 | 5.061 | |
b | 6.743 | 6.654 | ||
c | 4.523 | 4.526 |
Specimen | Average Grain Size D (µm) |
---|---|
Original SCM 420 raw material | 14.54 ± 0.09 |
SCM 420 carburized specimens with 40% DCSP for 3 h | 12.71 ± 0.11 |
SCM 420 carburized specimens with 40% DCSP for 6 h | 10.18 ± 0.13 |
SCM 420 carburized specimens with 40% DCSP for 12 h | 6.57 ± 0.07 |
SCM 420 carburized specimens with 40% DCSP for 3 h after quenching | 7.76 ± 0.10 |
SCM 420 carburized specimens with 40% DCSP for 6 h after quenching | 5.97 ± 0.09 |
SCM 420 carburized specimens with 40% DCSP for 12 h after quenching | 5.72 ± 0.12 |
Specimen | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Raw material of SCM 420 Steel | 0.221 | 0.248 | 0.641 | 0.012 | 0.013 | 0.947 | 0.048 | 0.140 | 0.063 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramli; Wu, C.-C.; Shaaban, A. Mechanical Properties of Pack Carburized SCM 420 Steel Processed Using Natural Shell Powders and Extended Carburization Time. Crystals 2021, 11, 1136. https://doi.org/10.3390/cryst11091136
Ramli, Wu C-C, Shaaban A. Mechanical Properties of Pack Carburized SCM 420 Steel Processed Using Natural Shell Powders and Extended Carburization Time. Crystals. 2021; 11(9):1136. https://doi.org/10.3390/cryst11091136
Chicago/Turabian StyleRamli, Chung-Chun Wu, and Adel Shaaban. 2021. "Mechanical Properties of Pack Carburized SCM 420 Steel Processed Using Natural Shell Powders and Extended Carburization Time" Crystals 11, no. 9: 1136. https://doi.org/10.3390/cryst11091136
APA StyleRamli, Wu, C.-C., & Shaaban, A. (2021). Mechanical Properties of Pack Carburized SCM 420 Steel Processed Using Natural Shell Powders and Extended Carburization Time. Crystals, 11(9), 1136. https://doi.org/10.3390/cryst11091136