Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = carburizing time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 9492 KiB  
Article
The Effect of Cyclic Heat Treatment on the Microstructure and Mechanical Properties of 18CrNiMo7-6 Gear Steel
by Xin Liu, Wenchao Yu, Hanlin Che, Jugan Zhang, Jiahao Zhu, Qingwei Jiang, Chi Zhang and Maoqiu Wang
Materials 2024, 17(23), 5855; https://doi.org/10.3390/ma17235855 - 29 Nov 2024
Cited by 2 | Viewed by 1106
Abstract
To avoid grain coarsening resulting from high-temperature carburizing, the effects of cyclic quenching and tempering on the microstructure and mechanical properties of 18CrNiMo7-6 gear steel were investigated. Three groups of samples were compared, which went through 0/1/3 times of quenching–tempering cycles after initial [...] Read more.
To avoid grain coarsening resulting from high-temperature carburizing, the effects of cyclic quenching and tempering on the microstructure and mechanical properties of 18CrNiMo7-6 gear steel were investigated. Three groups of samples were compared, which went through 0/1/3 times of quenching–tempering cycles after initial pseudo-carburizing. The variations in grain size, hardness, tensile strength, and toughness were systematically assessed using a series of experimental techniques. The experimental results indicate that the austenite grain size decreases from 14.8 μm to 5.0 μm as the number of cycles increases, accompanied by improved grain uniformity, which is beneficial to fine-grain strengthening mechanisms. During the phase transition, defects in the original martensite structure are transferred to the newly formed austenite, with the energy stored during the martensitic-to-austenitic transformation driving the grain refinement process. However, after several cycles of quenching and tempering, the release of some residual stresses and dislocations reduces the driving force for recrystallization, limiting further grain refinement. Although the strength decreased slightly after three cycles due to a reduction in dislocation density, toughness increased to a maximum of 172 J/cm2, primarily due to the enhancement of grain refinement and grain boundary density, which effectively hindered crack propagation. This study confirms the efficacy of cyclic heat treatment in refining grain structure and improving both strength and toughness, thereby contributing valuable insights to the research and development of high-performance gear steels. Full article
Show Figures

Figure 1

23 pages, 77065 KiB  
Article
Effects of Temperature and Frequency on Fretting Wear Behavior of 316L Austenitic Stainless Steel Before and After Plasma Carburization
by Lu Sun, Yuandong Li, Chi Cao, Guangli Bi, Xiaomei Luo and Jin Qiu
Coatings 2024, 14(12), 1496; https://doi.org/10.3390/coatings14121496 - 28 Nov 2024
Cited by 3 | Viewed by 983
Abstract
Double-glow low-temperature plasma carburization (LTPC) was utilized to prepare a carburized layer (PC) on a 316L austenitic stainless steel (ASS) surface, and the fretting wear behavior was evaluated at various temperatures and frequencies. The friction coefficient curves could be divided into running-in, wear, [...] Read more.
Double-glow low-temperature plasma carburization (LTPC) was utilized to prepare a carburized layer (PC) on a 316L austenitic stainless steel (ASS) surface, and the fretting wear behavior was evaluated at various temperatures and frequencies. The friction coefficient curves could be divided into running-in, wear, and stable stages. With increasing temperature, the wear mechanism of 316L ASS changed from adhesive and abrasive wear to adhesive wear, accompanied by plastic deformation, fatigue peeling, and oxidative wear. The carburized layer had an adhesive wear, plastic deformation, fatigue peeling, and oxidative wear mechanism. As the frequency increased, 316L ASS showed an adhesive wear, fatigue peeling, and oxidative wear mechanism. With increasing frequency, the wear mechanism of PC changed from abrasive and adhesive wear to abrasive wear, adhesive wear, and fatigue peeling, accompanied by oxidative wear. The carburized layer generally showed lower frictional energy dissipation coefficients and wear rates than 316L ASS. This work demonstrated that plasma carburization could improve the fretting wear stability and resistance of 316L ASS. The rise in frictional temperature, the tribo-chemical reaction time, and the evolution of debris collectively influenced the wear mechanisms and wear morphologies of 316L ASS before and after plasma carburization. This could provide theoretical support for the fretting damage behaviors of ball valves under severe service conditions. Full article
Show Figures

Figure 1

18 pages, 6571 KiB  
Article
Influence of Solid Solution Treatment on Microstructure and Mechanical Properties of 20CrNiMo/Incoloy 825 Composite Materials
by Jie Liu, Qiang Li, Hailian Gui, Peng Zhang, Sha Li, Chen Zhang, Hao Liu, Chunlei Shen and Pengyue Zhang
Materials 2024, 17(22), 5588; https://doi.org/10.3390/ma17225588 - 15 Nov 2024
Viewed by 878
Abstract
The utilization of 20CrNiMo/Incoloy 825 composite materials as high-pressure pipe manifold steel can not only improve the strength and hardness of the steel, but also improve its corrosion resistance. However, research on the heat treatment of 20CrNiMo/Incoloy 825 composite materials is still scarce. [...] Read more.
The utilization of 20CrNiMo/Incoloy 825 composite materials as high-pressure pipe manifold steel can not only improve the strength and hardness of the steel, but also improve its corrosion resistance. However, research on the heat treatment of 20CrNiMo/Incoloy 825 composite materials is still scarce. Thus, the aim of this study was to investigate the influence of solid solution treatment on the microstructure and properties of 20CrNiMo/Incoloy 825 composite materials. Firstly, the composite materials were subjected to solid solution treatment at temperatures ranging from 850 to 1100 °C with varied holding times of 1 h, 4 h, and 6 h. Microstructural analysis revealed that the solid solution treatment temperature had a more pronounced effect than the treatment time on the interface decarburization layer, carburization layer, and grain size. It was observed that the carburized layer thickness decreased while the decarburized layer thickness increased with an increase in the solid solution treatment temperature, oil cooling was found to enhance the hardness of the base layer of the composite materials, and the size of the original austenite grains of 20CrNiMo steel and Incoloy 825 increased with an increase in the solid solution treatment temperature. Secondly, the tensile properties, microhardness, and fracture morphology were evaluated after the composite materials underwent solid solution treatment at temperatures between 950 °C and 1100 °C for 1 h. The results indicated that increasing the solution temperature initially led to an increase in tensile strength and elongation after fracture, followed by a decrease; furthermore, the hardness of Incoloy 825 exhibited a declining trend, while the hardness of 20CrNiMo first decreased then increased. Thirdly, the shear properties and interfacial element diffusion of the composite materials were analyzed following solid solution treatment in a temperature range of 950 °C to 1100 °C for 1 h. The findings demonstrated that higher solid solution treatment temperatures induced full diffusion of Cr, Ni, and Fe atoms at the interface and softened the matrix, leading to an increase in the thickness of the diffusion layer and toughening of the composite interface. Therefore, the shear strength increased with an increase in the solid solution treatment temperature. Finally, the optimal solid solution treatment process for 20CrNiMo/Incoloy 825 composite materials was determined to be 1050 °C/1 h oil cooling, following which the composite materials had good comprehensive mechanical properties. Full article
Show Figures

Figure 1

17 pages, 3157 KiB  
Article
Surface Mechanical Property Prediction and Process Optimization of 18CrNiMo7-6 Carburized Steel Stator Guide Based on Radial Basis Function Neural Network and NSGA-II Algorithm
by Chunjin Li, Yongjie Tang, Jianzhi Chen and Zhengwen Xia
Coatings 2024, 14(11), 1369; https://doi.org/10.3390/coatings14111369 - 28 Oct 2024
Viewed by 1254
Abstract
The carburizing process is a key technology that affects the mechanical properties of the surface of the hydraulic motor stator guide rail, and the related process parameters have an important influence on surface hardness, the thickness of the carburized layer, and the deformation [...] Read more.
The carburizing process is a key technology that affects the mechanical properties of the surface of the hydraulic motor stator guide rail, and the related process parameters have an important influence on surface hardness, the thickness of the carburized layer, and the deformation of the guide rail. However, at present, the relationship between the carburizing process parameters and the surface mechanical properties of the target is not clear. This paper proposes a “hardness prediction and process parameter optimization” method. Firstly, a finite element model is established, with carburizing time, temperature, and carbon potential as the three input factors; the optimal Latin hypercubic experimental design and sensitivity analysis are applied. Secondly, surface hardness, carburized layer thickness, and deformation are taken as the output values, and an RBF neural network is used to construct the prediction model. The results show that the RBF neural network can be accurately used for the prediction of surface hardness, the thickness of the carburized layer, and deformation, and for the optimization of process parameters. The optimized parameters of surface hardness and the thickness of the carburized layer were increased by 4.2% and 5.1%, respectively, and the deformation amount was reduced to 0.31 mm, achieving the goal of optimal design. Full article
Show Figures

Figure 1

11 pages, 3308 KiB  
Article
Microstructure Evolution and Mechanical Properties of High-Temperature Carburized 18Cr2Ni4WA Steel
by Zhenyang Zhang, Zehua Wu, Yuedong Yuan, Xiaonan Wang and Yanzhong Tian
Materials 2024, 17(19), 4820; https://doi.org/10.3390/ma17194820 - 30 Sep 2024
Cited by 3 | Viewed by 1409
Abstract
Surface carburized steels are extensively utilized in gears due to their exceptional properties. The quality of the carburized layer is crucial in enhancing the contact fatigue and wear resistance of the components. However, the conventional carburizing method takes a long time and induces [...] Read more.
Surface carburized steels are extensively utilized in gears due to their exceptional properties. The quality of the carburized layer is crucial in enhancing the contact fatigue and wear resistance of the components. However, the conventional carburizing method takes a long time and induces a carbon emissions problem. In this study, the 18Cr2Ni4WA steel was double tempered (650 °C/4 h) after carburizing at 930 °C and 950 °C. The microstructural evolution, carbide precipitation, and mechanical properties of different carburized layers were analyzed. The results showed that increasing the carburizing temperature can control the microstructure of the carburized layer while reducing the carburizing time by over 60%. The high carbon content improves the strength of the carburized materials at 950 °C, and the inhibition of dislocation motion and grain boundary by the precipitation of more carbides ensures the stability of grain size, maintaining the strength of the materials. The carburized specimens at 950 °C showed an excellent combination of strength and plasticity in different carburized layers due to the variations in solid solution strengthening, dislocation strengthening, precipitation strengthening, and grain boundary strengthening induced by carbon atoms. This study holds significant reference for the advancement of modern steels carburized at high temperatures in a short time. Full article
Show Figures

Figure 1

15 pages, 2425 KiB  
Article
Effects of Shot Peening Pressure, Time, and Material on the Properties of Carburized Steel Shafts
by Shao-Quan Lu, Liu-Ho Chiu, Pei-Jung Chang and Chung-Kwei Lin
Materials 2024, 17(16), 4124; https://doi.org/10.3390/ma17164124 - 20 Aug 2024
Cited by 2 | Viewed by 1256
Abstract
Carburized steel shafts are commonly used in industry due to their good wear resistance and fatigue life. If the surface of carburized shafts exhibits an undesired tensile stress, shot peening treatment may be required to alter the stress condition on the surface. In [...] Read more.
Carburized steel shafts are commonly used in industry due to their good wear resistance and fatigue life. If the surface of carburized shafts exhibits an undesired tensile stress, shot peening treatment may be required to alter the stress condition on the surface. In the present study, the effects of shot peening pressure (3–5 kg/cm2), time (32–64 s), and material (stainless steel, carbon steel, and glass) on the residual stress, retained austenite, microhardness, and surface roughness of the carburized shafts were investigated. The experimental results showed that the surface residual tensile stress was changed into compressive stress after the shot peening treatment. The shot peening effects increased with the increasing peening pressure and time. In addition, a significant decrease in the amount of retained austenite in the subsurface region was observed. Peening with different materials can affect the peening effect. Using glass pellets exhibited the best shot peening effect but suffered massive pellet fracture during processing. In overall consideration, the optimal peening parameters for carburized steel shafts for practical industrial applications involved using the stainless-steel pellets with a peening pressure of 5 kg/cm2 and a peening time of 64 s. The maximum residual stress was −779 MPa at a depth of 0.02 mm, while the highest surface microhardness was 827 HV0.1. Full article
(This article belongs to the Special Issue Advances in Steel Materials: Structure, Processing, and Properties)
Show Figures

Figure 1

14 pages, 24089 KiB  
Article
Effect of Precipitated Particles on Austenite Grain Growth of Al- and Nb-Microalloyed 20MnCr Gear Steel
by Yingqi Zhu, Shitao Fan, Xiuzhen Lian and Na Min
Metals 2024, 14(4), 469; https://doi.org/10.3390/met14040469 - 17 Apr 2024
Cited by 2 | Viewed by 1458
Abstract
The paper deals with the effect of the morphology characteristics, grain size, and the volume fraction of AlN- and NbC-precipitated particles on the prior austenite grain growth behavior in the Al- and Nb-microalloying 20MnCr gear steel during pseudo-carburizing heat treatments. The results indicate [...] Read more.
The paper deals with the effect of the morphology characteristics, grain size, and the volume fraction of AlN- and NbC-precipitated particles on the prior austenite grain growth behavior in the Al- and Nb-microalloying 20MnCr gear steel during pseudo-carburizing heat treatments. The results indicate that the Nb addition in 20MnCr gear steel have a better effect on preventing austenite grain growth. The coarsening time after pseudo-carburizing in the Nb-microalloyed 20MnCr steel are improved by about 4 h compared with the Al-microalloyed steel. The precipitated particles coarsen and the number decreases with the pseudo-carburization temperature increasing, resulting in a reduction in the pinning pressure of the precipitated particles on the austenite grain boundaries. When the pseudo-carburization temperature reaches 1150 °C, the precipitated particles no longer have the ability to pin the austenite grain boundaries. In addition, the kinetics model for austenite grain growth under the process of the pinning and coarsening of the precipitated particles was established. Full article
(This article belongs to the Special Issue Microalloying in Ferrous and Non-ferrous Alloys)
Show Figures

Figure 1

20 pages, 18484 KiB  
Article
Effect of Low-Temperature Plasma Carburization on Fretting Wear Behavior of AISI 316L Stainless Steel
by Lu Sun, Yuandong Li, Chi Cao, Guangli Bi and Xiaomei Luo
Coatings 2024, 14(2), 158; https://doi.org/10.3390/coatings14020158 - 25 Jan 2024
Cited by 7 | Viewed by 1938
Abstract
AISI 316L stainless steel has received considerable attention as a common material for key ball valve components; however, its properties cannot be improved through traditional phase transformation, and fretting wears the contact interface between valve parts. A carburized layer was prepared on the [...] Read more.
AISI 316L stainless steel has received considerable attention as a common material for key ball valve components; however, its properties cannot be improved through traditional phase transformation, and fretting wears the contact interface between valve parts. A carburized layer was prepared on the surface of AISI 316L stainless steel by using double-glow low-temperature plasma carburization technology. This study reveals the effect of double-glow low-temperature plasma carburization technology on the fretting wear mechanism of AISI 316L steel under different normal loads and displacements. The fretting wear behavior and energy dissipation of the AISI 316L steel and the carburized layer were studied on an SRV-V fretting friction and wear machine with ball–plane contact. The wear mark morphology was analyzed by using scanning electron microscopy (SEM), the phase structure of the carburized layer was characterized with X-ray diffractometry (XRD), and the wear profile and wear volume were evaluated with laser confocal microscopy. The carburized layer contains a single Sc phase, a uniform and dense structure, and a metallurgically combined matrix. After plasma carburizing, the sample exhibited a maximum surface hardness of 897 ± 18 HV0.2, which is approximately four times higher than that of the matrix (273 ± 33 HV0.2). Moreover, the surface roughness was approximately doubled. The wear depth, wear rate, and frictional dissipation energy coefficient of the carburized layer were significantly reduced by up to approximately an order of magnitude compared with the matrix, while the wear resistance and fretting wear stability of the carburized layer were significantly improved. Under different load conditions, the wear mechanism of the AISI 316L steel changed from adhesive wear and abrasive wear to adhesive wear, fatigue delamination, and abrasive wear. Meanwhile, the wear mechanism of the carburized layer changed from adhesive wear to adhesive wear and fatigue delamination, accompanied by a furrowing effect. Under variable displacement conditions, both the AISI 316L steel and carburized layer mainly exhibited adhesive wear and fatigue peeling. Oxygen elements accumulated in the wear marks of the AISI 316L steel and carburized layer, indicating oxidative wear. The fretting wear properties of the AISI 316L steel and carburized layer were determined using the coupled competition between mechanical factors and thermochemical factors. Low-temperature plasma carburization technology improved the stability of the fretting wear process and changed the fretting regime of the AISI 316L steel and could be considered as anti-wearing coatings of ball valves. Full article
Show Figures

Figure 1

14 pages, 5926 KiB  
Article
Influence of Alloying Elements on the Carburizing Behavior in Acetylene Atmosphere
by Gi-Hoon Kwon, Hyunjun Park, Young-Kook Lee and Kyoungil Moon
Metals 2024, 14(1), 29; https://doi.org/10.3390/met14010029 - 26 Dec 2023
Viewed by 2475
Abstract
Three steel types (AISI 1020, AISI 8620, AISI 4120) with similar carbon content and different Cr content were used as test specimens to closely examine the effect of alloying elements for carbon penetration and diffusion on the steel surface during vacuum carburizing. The [...] Read more.
Three steel types (AISI 1020, AISI 8620, AISI 4120) with similar carbon content and different Cr content were used as test specimens to closely examine the effect of alloying elements for carbon penetration and diffusion on the steel surface during vacuum carburizing. The carbon mass gain according to the carburizing time was measured using a microbalance, and the average carbon flux, which is an indicator of the carbon penetration rate, was calculated using the measured weight as a variable. The outermost surface of the carburized specimen was observed by scanning electron microscopy (SEM) and Raman spectroscopy (RS), and the reason for the change in carburization rate according to the steel type was identified in relation to the equilibrium carbon contents calculated from Thermo-Calc. The overall carbon distribution and distribution of alloy elements on the outermost surface were quantitatively analyzed using an electron probe microanalyzer (EPMA). On the surfaces of the AISI 1020 and AISI 4120 carburized specimens, graphite layers and grain boundary carbide were formed during the carburizing process, which hindered the carburization rate, while no abnormal layer was observed on the surface of the AISI 8620 carburized specimens, so the overall carburization results were excellent. Full article
Show Figures

Figure 1

16 pages, 19582 KiB  
Article
On the Influence of Volumetric Energy Density and Inter-Layer Time on the Material Properties of Case-Hardening Steels
by Dominic Bartels, Moritz Elias Albert, Florian Nahr and Michael Schmidt
Alloys 2023, 2(3), 168-183; https://doi.org/10.3390/alloys2030013 - 25 Aug 2023
Cited by 4 | Viewed by 2598
Abstract
Case-hardening steels are gaining increasing interest in the field of laser powder bed fusion (PBF-LB/M) due to their excellent weldability. In combination with post-process carburization heat treatment, the surface properties can be improved to generate high-strength products. When manufacturing larger products by means [...] Read more.
Case-hardening steels are gaining increasing interest in the field of laser powder bed fusion (PBF-LB/M) due to their excellent weldability. In combination with post-process carburization heat treatment, the surface properties can be improved to generate high-strength products. When manufacturing larger products by means of PBF-LB/M, the in situ heat accumulation and the altered cooling rates affect the resulting material properties. Therefore, the fabrication of larger products requires an understanding on the influencing factors that affect the material properties. This work investigates the effect of different volumetric energy densities (VED) on the resulting microstructural and mechanical properties. It is found that the hardness decreases continuously along the build direction. The gradient depends on the applied energy and is stronger for higher energy inputs due to heat accumulation and lowered cooling rates. Furthermore, countering strategies are investigated to avoid process-specific hardness reduction along the build direction. This includes a reduced number of parts within the build job as well as a modified inter-layer time (ILT) between consecutive layers of the specimen. Applying a moderate inter-layer time helps to counter process-specific overheating, which is indicated by an almost homogeneous material hardness and melt pool size along the build direction. Full article
(This article belongs to the Special Issue Design of New Metallic Alloys for AM)
Show Figures

Figure 1

14 pages, 6435 KiB  
Article
Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing
by Rui Zhang, Qing Yuan, En Tang, Jiaxuan Mo, Zhicheng Zhang, Haijiang Hu and Guang Xu
Metals 2023, 13(8), 1422; https://doi.org/10.3390/met13081422 - 8 Aug 2023
Cited by 3 | Viewed by 1626
Abstract
The carburizing period for tool steel could be significantly shortened by operating at a higher carburizing temperature. However, grain coarsening happens during the carburizing process, and then results in the deteriorated surface properties in 20CrMnTi gear steel, especially at an elevated carburizing temperature. [...] Read more.
The carburizing period for tool steel could be significantly shortened by operating at a higher carburizing temperature. However, grain coarsening happens during the carburizing process, and then results in the deteriorated surface properties in 20CrMnTi gear steel, especially at an elevated carburizing temperature. The relationships between grain coarsening and the precipitates in the developed 20CrMnTi gear steel during pseudo-carburizing were established by microstructure characterization, precipitate analysis and in-situ observation to clarify the coarsening mechanism. The results manifested the Baker–Nutting orientation relationship between the (Ti, Mo)(C, N) particles and the matrix, and then testified to the redissolution and ripening of the (Ti, Mo)(C, N) precipitates pre-formed in the α phase during the carburizing. Coarsening in austenite grain during the carburizing process was mainly caused by the rapid redissolution and ripening of the (Ti, Mo)(C, N) precipitates, although this occurred in a very short pseudo-carburizing time. The area density of the dispersed unripe (Ti, Mo)(C, N) particles markedly decreased from 0.389% in as-hot rolled gear steel to 0.341%, and then from 0.279% in carburized steels at 970 and 980 °C, respectively. Additionally, the redissolution and ripening of the (Ti, Mo)(C, N) precipitates were accelerated by the elevated carburizing temperature of 980 °C, at which time the growing rate in austenite grains was 2.34 μm/min during the prior 1 min (0.79 μm/min during the prior 3 min at 970 °C). The temperature then decreased to 0.003 μm/min in the subsequent carburizing process. The results obtained our current work reflected that the particles with excellent thermal stability should play important roles in the limitation of grain coarsening during the carburizing process. Full article
(This article belongs to the Special Issue Novel Steel Compositions and Processing Technologies)
Show Figures

Figure 1

23 pages, 16663 KiB  
Article
Increasing Hardness and Wear Resistance of Austenitic Stainless Steel Surface by Anodic Plasma Electrolytic Treatment
by Sergei Kusmanov, Tatiana Mukhacheva, Ivan Tambovskiy, Alexander Naumov, Roman Belov, Ekaterina Sokova and Irina Kusmanova
Metals 2023, 13(5), 872; https://doi.org/10.3390/met13050872 - 30 Apr 2023
Cited by 6 | Viewed by 3088
Abstract
The results of modifying the surface of austenitic stainless steel by anodic plasma electrolytic treatment are presented. Surface treatment was carried out in aqueous electrolytes based on ammonium chloride (10%) with the addition of ammonia (5%) as a source of nitrogen (for nitriding), [...] Read more.
The results of modifying the surface of austenitic stainless steel by anodic plasma electrolytic treatment are presented. Surface treatment was carried out in aqueous electrolytes based on ammonium chloride (10%) with the addition of ammonia (5%) as a source of nitrogen (for nitriding), boric acid (3%) as a source of boron (for boriding) or glycerin (10%) as a carbon source (for carburizing). Morphology, surface roughness, phase composition and microhardness of the diffusion layers in addition to the tribological properties were studied. The influence of physicochemical processes during the anodic treatment of the features of the formation of the modified surface and its operational properties are shown. The study revealed the smoothing of irregularities and the reduction in surface roughness during anodic plasma electrolytic treatment due to electrochemical dissolution. An increase in the hardness of the nitrided layers to 1450 HV with a thickness of up to 20–25 μm was found due to the formation of iron nitrides and iron-chromium carbides with a 3.7-fold decrease in roughness accompanied by an increase in wear resistance by 2 orders. The carburizing of the steel surface leads to a smaller increase in hardness (up to 700 HV) but a greater thickness of the hardened layer (up to 80 μm) due to the formation of chromium carbides and a solid solution of carbon. The roughness and wear resistance of the carburized surface change are approximately the same values as after nitriding. As a result of the boriding of the austenitic stainless steel, there is no hardening of the surface, but, at the same time, there is a decrease in roughness and an increase in wear resistance on the surface. It has been established that frictional bonds in the friction process are destroyed after all types of processing as a result of the plastic displacement of the counter body material. The type of wear can be characterized as fatigue wear with boundary friction and plastic contact. The correlation of the friction coefficient with the Kragelsky–Kombalov criterion, a generalized dimensionless criterion of surface roughness, is shown. Full article
(This article belongs to the Topic Microstructure and Properties in Metals and Alloys)
Show Figures

Figure 1

10 pages, 2252 KiB  
Article
Evaluation of Wear Resistance of AISI L6 and 5140 Steels after Surface Hardening with Boron and Copper
by Stepan Lysykh, Vasily Kornopoltsev, Undrakh Mishigdorzhiyn, Yuri Kharaev and Zhongliang Xie
Lubricants 2023, 11(2), 48; https://doi.org/10.3390/lubricants11020048 - 29 Jan 2023
Cited by 6 | Viewed by 2331
Abstract
(1) Background: Boriding is one of the most common methods of thermal-chemical treatment due to its excellent hardness and wear resistance of the produced diffusion layers. However, it has limited application compared to carburizing and nitriding because of fragility and chipping. Introducing another [...] Read more.
(1) Background: Boriding is one of the most common methods of thermal-chemical treatment due to its excellent hardness and wear resistance of the produced diffusion layers. However, it has limited application compared to carburizing and nitriding because of fragility and chipping. Introducing another alloying element into the boron media helps avoid those drawbacks and improve other surface properties of the layer. The purpose of this work is to improve the surface mechanical properties of L6 and 5140 low alloy steels by two-component surface hardening with boron and copper. (2) Methods: The treatment was performed by means of a powder-pack method using boron, copper, and aluminum powders in the following proportions: 60% B4C + 20% Al2O3 + 16% CuO + 4% NaF. The time–temperature parameters of the treatment were four hours exposure at 950 °C. Microstructure, elemental, and phase composition were investigated as well as microhardness and wear resistance of the obtained layers. (3) Results: Layers of up to 180–200 μm thick are formed on both steels as a result of treatment. Needle-like structures similar to pure boriding was obtained. The maximum microhardness was 2000 HV on L6 steel and 1800 HV on 5140 steel. These values correspond to iron borides and were confirmed by XRD analysis revealing FeB, Fe2B, and Cr5B3. The wear resistance of both steels was about ten times higher after the treatment compared to non-treated samples. (4) Conclusions: Surface hardening with boron and copper significantly improves the mechanical properties of both alloy steels. The results obtained are beneficial for different tribo-pair systems or three-body wear with abrasion and minimum impact loads. Full article
Show Figures

Figure 1

14 pages, 5154 KiB  
Article
Improvement in Wear Resistance of Grade 37 Titanium by Microwave Plasma Oxy-Carburizing
by Paolo Veronesi, Alessio Balestri and Elena Colombini
Technologies 2023, 11(1), 13; https://doi.org/10.3390/technologies11010013 - 12 Jan 2023
Cited by 4 | Viewed by 2188
Abstract
Grade 37 titanium is widely used in racing applications thanks to its oxidation resistance up to 650 °C, but it suffers from poor wear and fretting resistance, especially at high temperature. In this paper, different surface modification techniques, namely, carburizing, coating by PVD-ZrO [...] Read more.
Grade 37 titanium is widely used in racing applications thanks to its oxidation resistance up to 650 °C, but it suffers from poor wear and fretting resistance, especially at high temperature. In this paper, different surface modification techniques, namely, carburizing, coating by PVD-ZrO2 and a novel microwave plasma oxy-carburizing treatment, are investigated in terms of hardness, wear resistance and scratch hardness, compared to the untreated substrate. Numerical simulation allowed optimization of the design of the microwave plasma source, which operated at 2.45 GHz at atmospheric pressure. The proposed microwave plasma oxy-carburizing treatment is localized and can serve to improve the tribological properties of selected regions of the sample; compared to untreated Grade 37 titanium, the oxy-carburized layer presents a decrease in the wear rate at 450 °C against alumina of 54% and an increase in scratch hardness of more than three times. Full article
(This article belongs to the Special Issue New Advances in Microwave Technologies and Its Applications)
Show Figures

Figure 1

22 pages, 4742 KiB  
Article
Effects of Potassium Loading over Iron–Silica Interaction, Phase Evolution and Catalytic Behavior of Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis
by Hai Chang, Quan Lin, Meng Cheng, Kui Zhang, Bo Feng, Jiachun Chai, Yijun Lv and Zhuowu Men
Catalysts 2022, 12(8), 916; https://doi.org/10.3390/catal12080916 - 19 Aug 2022
Cited by 13 | Viewed by 3958
Abstract
Potassium (K) promoter and its loading contents were shown to have remarkable effects on the Fe–O–Si interaction of precipitated Fe/Cu/K/SiO2 catalysts for low-temperature Fischer-Tropsch synthesis (FTS). With the increase in K content from 2.3% (100 g Fe based) up to 7% in [...] Read more.
Potassium (K) promoter and its loading contents were shown to have remarkable effects on the Fe–O–Si interaction of precipitated Fe/Cu/K/SiO2 catalysts for low-temperature Fischer-Tropsch synthesis (FTS). With the increase in K content from 2.3% (100 g Fe based) up to 7% in the calcined precursors, Fe–O–Si interaction was weakened, as reflected by ATR/FTIR, H2-TPR and XPS investigations. XRD results confirmed that the diffraction peak intensity from (510) facet of χ-Fe5C2 phase strengthened with increasing K loading, which indicates the crystallite size of χ-Fe5C2 increased with the increase in K contents either during the syngas reduction/carburization procedure or after FTS reaction. H2-TPH results indicated that more reactive surface carbon (alpha-carbon) was obtained over the higher K samples pre-carburized by syngas. Raman spectra illustrated that a greater proportion of graphitic carbon was accumulated over the surface of spent samples with higher K loading. At the same time, ATR-FTIR, XRD and Mössbauer spectra (MES) characterization results showed that a relatively higher level of bulk phase Fayalite (Fe2SiO4) species was observed discernibly in the lowest K loading sample (2.3 K%) in this work. The catalytic evaluation results showed that the CO conversion, CO2 selectivity and O/P (C2–C4) ratio increased progressively with the increasing K loading, whereas a monotonic decline in both CO conversion and O/P (C2–C4) ratio was observed on the highest K loading sample during c.a. 280 h of TOS. Full article
(This article belongs to the Special Issue Development of Novel Catalysts for Fischer–Tropsch Synthesis)
Show Figures

Figure 1

Back to TopTop