# Observation of Backflow during the Anihilation of Topologocal Defects in Freely Suspended Smectic Films

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results and Discussion

#### 3.1. Experimental Results

#### 3.2. Discussion and Theoretical Background

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Sample Availability

## Abbreviations

FSF | freely suspended smectic film |

ROI | region of interest |

SmC | smectic C |

## References

- Mermin, N.D. The topological theory of defects in ordered media. Rev. Mod. Phys.
**1979**, 51, 591–648. [Google Scholar] [CrossRef] - Roessler, U.K.; Bogdanov, A.N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature
**2006**, 442, 797–801. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Woods, C.R.; Britnell, L.; Eckmann, A.; Ma, R.S.; Lu, J.C.; Guo, H.M.; Lin, X.; Yu, G.L.; Cao, Y.; Gorbachev, R.V.; et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys.
**2014**, 10, 451–456. [Google Scholar] [CrossRef] - Vasudevan, R.K.; Neumayer, S.M.; Susner, M.A.; McGuire, M.A.; Pantelides, S.T.; Maksymovych, P.; Leonard, D.N.; Balke, N.; Borisevich, A.Y. Domains and Topological Defects in Layered Ferrielectric Materials: Implications for Nanoelectronics. ACS Appl. Nano Mater.
**2020**, 3, 8161–8166. [Google Scholar] [CrossRef] - Bauerle, C.; Bunkov, Y.M.; Fisher, S.N.; Godfrin, H.; Pickett, G.R. Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He. Nature
**1996**, 382, 332–334. [Google Scholar] [CrossRef] - Ruutu, V.M.H.; Eltsov, V.B.; Gill, A.J.; Kibble, T.W.B.; Krusius, M.; Makhlin, Y.G.; Placais, B.; Volovik, G.E.; Xu, W. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature
**1996**, 382, 334–336. [Google Scholar] [CrossRef] [Green Version] - Bowick, M.J.; Giomi, L. Two-dimensional matter: Order, curvature and defects. Adv. Phys.
**2009**, 58, 449–563. [Google Scholar] [CrossRef] - Irvine, W.T.M.; Vitelli, V.; Chaikin, P.M. Pleats in crystals on curved surfaces. Nature
**2010**, 468, 947–951. [Google Scholar] [CrossRef] - Irvine, W.T.M.; Hollingsworth, A.D.; Grier, D.G.; Chaikin, P.M. Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Proc. Natl. Acad. Sci. USA
**2013**, 110, 15544–15548. [Google Scholar] [CrossRef] [Green Version] - Musevic, I.; Skarabot, M.; Tkalec, U.; Ravnik, M.; Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science
**2006**, 313, 954–958. [Google Scholar] [CrossRef] - Tkalec, U.; Ravnik, M.; Copar, S.; Zumer, S.; Musevic, I. Reconfigurable Knots and Links in Chiral Nematic Colloids. Science
**2011**, 333, 62–65. [Google Scholar] [CrossRef] [Green Version] - Muzny, C.; Clark, N. Direct observation of the Brownian-motion of a liquid-crystal topological defect. Phys. Rev. Lett.
**1992**, 68, 804–807. [Google Scholar] [CrossRef] - Alexander, G.P.; Chen, B.G.G.; Matsumoto, E.A.; Kamien, R.D. Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys.
**2012**, 84, 497–514. [Google Scholar] [CrossRef] [Green Version] - Harth, K.; Stannarius, R. Topological Point Defects of Liquid Crystals in Quasi-Two-Dimensional Geometries. Front. Phys.
**2020**, 8, 112. [Google Scholar] [CrossRef] - Beliaev, M.; Zoellner, D.; Pacureanu, A.; Zaslansky, P.; Zlotnikov, I. Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nat. Phys.
**2021**. [Google Scholar] [CrossRef] - Fardin, M.A.; Ladoux, B. Living proof of effective defects. Nature
**2021**, 17, 172. [Google Scholar] - Kleman, M.; Friedel, J. Disclinations, dislocations, and continuous defects: A reappraisal. Rev. Mod. Phys.
**2008**, 80, 61–115. [Google Scholar] [CrossRef] [Green Version] - Chuang, I.; Durrer, R.; Turok, N.; Yurke, B. Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals. Science
**1991**, 251, 1336–1342. [Google Scholar] [CrossRef] - Wright, D.C.; Mermin, N.D. Crystalline liquids—The blue phases. Rev. Mod. Phys.
**1989**, 61, 385–432. [Google Scholar] [CrossRef] - Dafermos, C.M. Disinclinations in Liquid Crystals. Q. J. Mech. Appl. Math.
**1970**, 23, S49. [Google Scholar] [CrossRef] - Imura, H.; Okano, K. Friction coefficient for a moving disclination in a nematic liquid crystal. Phys. Lett.
**1973**, A42, 403. [Google Scholar] [CrossRef] - Pleiner, H. Dynamics of a disclination point in smectic-C and -C
^{*}liquid-crystal films. Phys. Rev. A**1988**, 37, 3986. [Google Scholar] [CrossRef] [PubMed] - Kleman, M.; Lavrentovich, O.D. Soft Matter Physics: An Introduction; Springer: Berlin, Germany, 2003. [Google Scholar]
- Svenšek, D.; Žumer, S. Hydrodynamics of Pair-Annihilating Disclinations in SmC Films. Phys. Rev. Lett.
**2003**, 90, 155501, Erratum in**2003**, 90, 219901. [Google Scholar] [CrossRef] [Green Version] - Vromans, A.J.; Giomi, L. Orientational properties of nematic disclinations. Soft Matter
**2016**, 12, 6490–6495. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tang, X.; Selinger, J.V. Orientation of topological defects in 2D nematic liquid crystals. Soft Matter
**2017**, 13, 5481. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tang, X.; Selinger, J.V. Theory of defect motion in 2D passive and active nematic liquid crystals. Soft Matter
**2019**, 15, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tang, X.; Selinger, J.V. Annihilation trajectory of defects in smectic-C films. Phys. Rev. E
**2020**, 102, 012702. [Google Scholar] [CrossRef] - Pargellis, A.N.; Finn, P.; Goodby, J.W.; Panizza, P.; Yurke, B.; Cladis, P.E. Defect dynamics and coarsening dynamics in smectic-C films. Phys. Rev. A
**1992**, 46, 7765. [Google Scholar] [CrossRef] [PubMed] - Blanc, C.; Svenšek, D.; Žumer, S.; Nobili, M. Dynamics of Nematic Liquid Crystal Disclinations: The Role of the Backflow. Phys. Rev. Lett.
**2005**, 95, 097802. [Google Scholar] [CrossRef] [Green Version] - Dierking, I.; Marshall, O.; Wright, J.; Bulleid, N. Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. Phys. Rev. E
**2005**, 71, 061709. [Google Scholar] [CrossRef] - Oswald, P.; Ignes-Mullol, J. Backflow-Induced Asymmetric Collapse of Disclination Lines in Liquid Crystals. Phys. Rev. Lett.
**2006**, 95, 027801. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dierking, I.; Ravnik, M.; Lark, E.; Healey, J.; Alexander, G.P.; Yeomans, J.M. Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Phys. Rev. E
**2012**, 85, 021703. [Google Scholar] [CrossRef] - Missaoui, A.; Harth, K.; Salamon, P.; Stannarius, R. Annihilation of point defect pairs in freely suspended liquid crystal films. Phys. Rev. Res.
**2020**, 2, 013080. [Google Scholar] [CrossRef] [Green Version] - Muzny, C. Properties of Defects in Freely Suspended Smectic C Thin Films. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 1994. [Google Scholar]
- Stannarius, R.; Harth, K. Defect Interactions in Anisotropic Two-Dimensional Fluids. Phys. Rev. Lett
**2016**, 117, 157801. [Google Scholar] [CrossRef] [PubMed] - Pettey, D.; Lubensky, T.C.; Link, D.R. Topological Inclusions in 2D Smectic-C Films. Liq. Cryst.
**1998**, 25, 579. [Google Scholar] [CrossRef] - Silvestre, N.M.; Patricio, P.; Telo da Gama, M.M.; Pattanaporkratana, A.; Park, C.S.; Maclennan, J.E.; Clark, N.A. Modeling dipolar and quadrupolar defect structures generated by chiral islands in freely suspended liquid crystal films. Phys. Rev. E
**2009**, 80, 041708. [Google Scholar] [CrossRef] [Green Version] - Bohley, C.; Stannarius, R. Inclusions in free standing smectic liquid crystal films. Soft Matter
**2008**, 4, 683. [Google Scholar] [CrossRef] - Dolganov, P.V.; Cluzeau, P.; Dolganov, V.K. Interaction and self-organization of inclusions in two-dimensional free-standing smectic films. Liq. Cryst. Rev.
**2019**, 7, 1. [Google Scholar] [CrossRef] - Cheung, C.; Hwang, Y.; Wu, X.; Choi, H. Diffusion of particles in free-standing liquid films. Phys. Rev. Lett.
**1996**, 76, 2531–2534. [Google Scholar] [CrossRef] [PubMed] - Nguyen, Z.H.; Atkinson, M.; Park, C.S.; Maclennan, J.; Glaser, M.; Clark, N. Crossover between 2D and 3D Fluid Dynamics in the Diffusion of Islands in Ultrathin Freely Suspended Smectic Films. Phys. Rew. Lett.
**2010**, 105, 268304. [Google Scholar] [CrossRef] - Eremin, A.; Baumgarten, S.; Harth, K.; Stannarius, R.; Nguyen, Z.H.; Goldfain, A.; Park, C.S.; Maclennan, J.E.; Glaser, M.A.; Clark, N.A. Two-dimensional microrheology of freely suspended liquid crystal films. Phys. Rev. Lett.
**2011**, 107, 268301. [Google Scholar] [CrossRef] [Green Version] - Qi, Z.; Nguyen, Z.H.; Park, C.S.; Glaser, M.A.; Maclennan, J.E.; Clark, N.A.; Kuriabova, T.; Powers, T.R. Mutual Diffusion of Inclusions in Freely Suspended Smectic Liquid Crystal Films. Phys. Rev. Lett.
**2014**, 113, 128304. [Google Scholar] [CrossRef] [Green Version] - Ishikawa-Ankerhold, H.C.; Ankerhold, R.; Drummen, G.P.C. Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules
**2012**, 17, 4047–4132. [Google Scholar] [PubMed] [Green Version] - Clark, N.A.; Eremin, A.; Glaser, M.A.; Hall, N.R.; Harth, K.; Klopp, C.; Maclennan, J.E.; Park, C.S.; Stannarius, R.; Tin, P.; et al. Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity. Adv. Space Res.
**2017**, 60, 737. [Google Scholar] [CrossRef] [Green Version] - Harth, K. Otto von Guericke University, Magdeburg. Personal communication, 2009. [Google Scholar]
- Smalyukh, I.I. Confocal Microscopy of Director Structures in Strongly Confined and Composite Systems. Mol. Cryst. Liq. Cryst.
**2007**, 477, 23–41. [Google Scholar] [CrossRef] - Yoshioka, J.; Ito, F.; Suzuki, Y.; Takahashi, H.; Takizawa, H.; Tabe, Y. Director/barycentric rotation in cholesteric droplets under temperature gradient. Soft Matter
**2014**, 10, 5869. [Google Scholar] [CrossRef] [PubMed] - Poy, G.; Oswald, P. Do Lehmann cholesteric droplets subjected to a temperature gradient rotate as rigid bodies? Soft Matter
**2016**, 12, 2604. [Google Scholar] [CrossRef] - Ryskin, G.; Kremenetsky, M. Drag Force on a Line Defect Moving through an Otherwise Undisturbed Field: Disclination Line in a Nematic Liquid Crystal. Phys. Rev. Lett.
**1991**, 67, 1574. [Google Scholar] [CrossRef] - Missaoui, A. Dynamics of Topological Defects in Freely Suspended Smectic Liquid Crystal Films and Bubbles. Ph.D. Thesis, Otto von Guericke University, Magdeburg and Sorbonne University, Paris, France, 2021. [Google Scholar]
- Eremin, A.; Bohley, C.; Stannarius, R. Stick-slip dynamics around a topological defect in free standing smectic films. Phys. Rev. E
**2006**, 74, 040701(R). [Google Scholar] [CrossRef] - Stewart, I.W. The Static and Dynamic Continuum Theory of Liquid Crystals; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Tóth, G.; Denniston, C.; Yeomans, J.M. Hydrodynamics of Topological Defects in Nematic Liquid Crystals. Phys. Rev. Lett.
**2002**, 88, 105504. [Google Scholar] [CrossRef] [Green Version] - Brugués, J.; Ignés-Mullol, J.; Casademunt, J.; Sagués, F. Probing Elastic Anisotropy from Defect Dynamics in Langmuir Monolayers. Phys. Rev. Lett.
**2008**, 100, 037801. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**(

**a**) Left: Scheme of the film holder mounted on the microscopy table. Right: Schematic of the dye orientation drawn in red in the nematic matrix drawn in blue. $\mathbf{n}$ is the nematic director, $\mathbf{m}$ is the transition moment, and $\mathbf{P}$ is the polarization plane of the excitation beam. (

**b**) Snapshots from the experiment showing the fluorescence intensity recovery of a bleached region (exposed for 8 s to full laser power before $t=0$). The film does not contain defects in the vicinity of the region of interest (ROI). (

**c**) Time dependence of the measured mean intensity of the bleached ROI presented in Figure 1b. The recovery time is about 10 s. The dashed line is an exponential fit.

**Figure 2.**Snapshots of two defect pairs: The $+1$ defect has always tangential orientation of the c-director near the core. The $-1$ defect is initially rotated respective to the partner (in mismatch) so that the director field along a straight line connecting the cores is not uniform. Image (

**a**) was recorded 16 s before annihilation. During the mutual approach, the mismatch angle gradually reduces to zero. This state is almost reached in image (

**b**), 3 s before annihilation. Yellow bars symbolize 50 $\mathsf{\mu}$m. Images were recorded in polarized light with crossed polarizers (black lines) and a diagonal wave plate (slow axis: diagonal yellow line). Bluish regions characterize the c-director in northeast or southwest direction, while orange regions indicate a c-director orientation in southeast or northwest directions. In magenta regions, the c-director is either horizontal or vertical in the images. (

**c**) Defects pair observed in fluorescence mode (top: +1 defect, bottom: −1 defect). The black arrows sketch the c-director. The polarizer orientation is indicated by a black bar. Images (

**a**,

**b**) are courtesy of Péter Salamon and Kirsten Harth.

**Figure 3.**Trajectories of the defects and the flow field in the bleached regions: The snapshots show the pairs at the beginning of the recording, immediately after bleaching stopped. The $+1$ defect, $-1$ defect, and ROI trajectories are shown in red, blue and white respectively. The motion of the ROI near the positive defect (

**a**,

**b**) follows the motion of the defect. The ROI near the negative defect (

**c**,

**d**) does not move noticeably. (

**a**) A single ROI bleach; (

**b**) a double ROI bleach. The trajectories of the $+1$ defect, of the $-1$ defect, and of the ROI are shown in red, blue and white, respectively. The disclinations and ROI are tracked for 8 s. The position of the excitation beam polarization is given by black lines.

**Figure 4.**Distances of two matching defects with respect to the annihilation point. The graphs show the defect separation ${r}_{12}$ and the distances ${r}_{1}$ of the $+1$ defect and ${r}_{2}$ of the $-1$ defect from the point where they finally meet and annihilate. The dashed lines are square-root fits $r=d\sqrt{t}$, and the numbers give d in units of $\mathsf{\mu}$m s${}^{-1/2}$. Image adapted from Reference [52].

**Figure 5.**Flow field in a strongly mismatched pair of defects (mismatch angle approximately 180${}^{\circ}$). Because of the mismatch of the orientations, the defects do not approach each other along the straight interconnection line. The images show the pair with ROI near the $+1$ defect (

**b**) and the $-1$ defect (

**c**). (

**a**) A magnification of the $+1$ defect and ROI from image (

**b**).

**Figure 6.**Advective flow around disclinations in a $\pm 1$ pair. (

**a**) Flow field determined experimentally using the fluorescence bleaching method. The velocity bars are normalized with respect to that of the $+1$ defect (see text). The motion of the $s=+1$ is accompanied by the flow in the same direction of motion. In contrast, the flow is nearly absent in the vicinity of the $s=-1$ defect. (

**b**) Numerical flow velocity field showing the formation of the flow vortices around the $s=+1$ defect. Image (

**b**) reproduced with permission from Svenšek and Žumer [24], copyright American Physical Society.

**Table 1.**Measured flow fields in the images shown in this paper. All velocities are given in $\mathsf{\mu}$m/s. The indices ROI+ and ROI− refer to spots near the disclinations with the respective sign. For Figure 3b, the average of the velocities of both bleached spots is given. The accuracy of the velocity data is of the order of 1 $\mathsf{\mu}$m/s.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Missaoui, A.; Lacaze, E.; Eremin, A.; Stannarius, R.
Observation of Backflow during the Anihilation of Topologocal Defects in Freely Suspended Smectic Films. *Crystals* **2021**, *11*, 430.
https://doi.org/10.3390/cryst11040430

**AMA Style**

Missaoui A, Lacaze E, Eremin A, Stannarius R.
Observation of Backflow during the Anihilation of Topologocal Defects in Freely Suspended Smectic Films. *Crystals*. 2021; 11(4):430.
https://doi.org/10.3390/cryst11040430

**Chicago/Turabian Style**

Missaoui, Amine, Emmanuelle Lacaze, Alexey Eremin, and Ralf Stannarius.
2021. "Observation of Backflow during the Anihilation of Topologocal Defects in Freely Suspended Smectic Films" *Crystals* 11, no. 4: 430.
https://doi.org/10.3390/cryst11040430