#
Isotropic Nature of the Metallic Kagome Ferromagnet Fe_{3}Sn_{2} at High Temperatures

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Characterization

*****in Figure 1f.

#### 3.2. Inelastic Neutron Scattering

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Guo, H.M.; Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B
**2009**, 80, 113102. [Google Scholar] [CrossRef][Green Version] - Mazin, I.; Jeschke, H.O.; Lechermann, F.; Lee, H.; Fink, M.; Thomale, R.; Valentí, R. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun.
**2014**, 5, 1–7. [Google Scholar] [CrossRef][Green Version] - Kang, M.; Ye, L.; Fang, S.; You, J.S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater.
**2020**, 19, 163–169. [Google Scholar] [CrossRef][Green Version] - Ye, L.; Kang, M.; Liu, J.; Von Cube, F.; Wicker, C.R.; Suzuki, T.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Bell, D.C.; et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature
**2018**, 555, 638–642. [Google Scholar] [CrossRef] [PubMed] - Wang, Q.; Sun, S.; Zhang, X.; Pang, F.; Lei, H. Anomalous Hall effect in a ferromagnetic Fe
_{3}Sn_{2}single crystal with a geometrically frustrated Fe bilayer kagome lattice. Phys. Rev. B**2016**, 94, 075135. [Google Scholar] [CrossRef][Green Version] - Karplus, R.; Luttinger, J.M. Hall Effect in Ferromagnetics. Phys. Rev.
**1954**, 95, 1154–1160. [Google Scholar] [CrossRef] - Lin, Z.; Choi, J.H.; Zhang, Q.; Qin, W.; Yi, S.; Wang, P.; Li, L.; Wang, Y.; Zhang, H.; Sun, Z.; et al. Flatbands and Emergent Ferromagnetic Ordering in Fe
_{3}Sn_{2}Kagome Lattices. Phys. Rev. Lett.**2018**, 121, 096401. [Google Scholar] [CrossRef][Green Version] - Malaman, B.; Roques, B.; Courtois, A.; Protas, J. Structure cristalline du stannure de fer Fe
_{3}Sn_{2}. Acta Crystallogr. Sect. B**1976**, 32, 1348–1351. [Google Scholar] [CrossRef][Green Version] - Vaqueiro, P.; Sobany, G.G. A powder neutron diffraction study of the metallic ferromagnet Co
_{3}Sn_{2}S_{2}. Solid State Sci.**2009**, 11, 513–518. [Google Scholar] [CrossRef] - Hou, Z.; Ren, W.; Ding, B.; Xu, G.; Wang, Y.; Yang, B.; Zhang, Q.; Zhang, Y.; Liu, E.; Xu, F.; et al. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy. Adv. Mater.
**2017**, 29, 1–8. [Google Scholar] [CrossRef] - Tang, J.; Kong, L.; Wu, Y.; Wang, W.; Chen, Y.; Wang, Y.; Li, J.; Soh, Y.; Xiong, Y.; Tian, M.; et al. Target Bubbles in Fe
_{3}Sn_{2}Nanodisks at Zero Magnetic Field. ACS Nano**2020**, 14, 10986–10992. [Google Scholar] [CrossRef] - Hou, Z.; Zhang, Q.; Xu, G.; Zhang, S.; Gong, C.; Ding, B.; Li, H.; Xu, F.; Yao, Y.; Liu, E.; et al. Manipulating the Topology of Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement. ACS Nano
**2019**, 13, 922–929. [Google Scholar] [CrossRef][Green Version] - Hou, Z.; Zhang, Q.; Zhang, X.; Xu, G.; Xia, J.; Ding, B.; Li, H.; Zhang, S.; Batra, N.M.; Costa, P.M.F.J.; et al. Current-Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Adv. Mater.
**2020**, 32, 1904815. [Google Scholar] [CrossRef][Green Version] - Hou, Z.; Zhang, Q.; Xu, G.; Gong, C.; Ding, B.; Wang, Y.; Li, H.; Liu, E.; Xu, F.; Zhang, H.; et al. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe. Nano Lett.
**2018**, 18, 1274–1279. [Google Scholar] [CrossRef][Green Version] - Li, H.; Ding, B.; Chen, J.; Li, Z.; Hou, Z.; Liu, E.; Zhang, H.; Xi, X.; Wu, G.; Wang, W. Large topological Hall effect in a geometrically frustrated kagome magnet Fe
_{3}Sn_{2}. Appl. Phys. Lett.**2019**, 114, 192408. [Google Scholar] [CrossRef][Green Version] - O’Neill, C.D.; Wills, A.S.; Huxley, A.D. Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe
_{3}Sn_{2}. Phys. Rev. B**2019**, 100, 174420. [Google Scholar] [CrossRef][Green Version] - Wang, Q.; Yin, Q.; Lei, H. Giant topological Hall effect of ferromagnetic kagome metal Fe
_{3}Sn_{2}. Chin. Phys. B**2020**, 29, 017101. [Google Scholar] [CrossRef] - Du, Q.; Han, M.G.; Liu, Y.; Ren, W.; Zhu, Y.; Petrovic, C. Room-Temperature Skyrmion Thermopower in Fe
_{3}Sn_{2}. Adv. Quantum Technol.**2020**, 3, 2000058. [Google Scholar] [CrossRef] - Okubo, T.; Chung, S.; Kawamura, H. Multiple-q States and the Skyrmion Lattice of the Triangular-Lattice Heisenberg Antiferromagnet under Magnetic Fields. Phys. Rev. Lett.
**2012**, 108, 017206. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hayami, S.; Lin, S.Z.; Batista, C.D. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy. Phys. Rev. B
**2016**, 93, 184413. [Google Scholar] [CrossRef][Green Version] - Leonov, A.; Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun.
**2015**, 6, 1–8. [Google Scholar] [CrossRef][Green Version] - Lin, S.Z.; Hayami, S. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys. Rev. B
**2016**, 93, 064430. [Google Scholar] [CrossRef][Green Version] - Malaman, B.; Fruchart, D.; Caer, G.L. Magnetic properties of Fe
_{3}Sn_{2}. II. Neutron diffraction study (and Mossbauer effect). J. Phys. Met. Phys.**1978**, 8, 2389–2399. [Google Scholar] [CrossRef] - Fenner, L.A.; Dee, A.A.; Wills, A.S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe
_{3}Sn_{2}. J. Phys. Condens. Matter**2009**, 21, 452202. [Google Scholar] [CrossRef][Green Version] - Kumar, N.; Soh, Y.; Wang, Y.; Xiong, Y. Magnetotransport as a diagnostic of spin reorientation: Kagome ferromagnet as a case study. Phys. Rev. B
**2019**, 100, 214420. [Google Scholar] [CrossRef][Green Version] - Heritage, K.; Bryant, B.; Fenner, L.A.; Wills, A.S.; Aeppli, G.; Soh, Y.A. Images of a First-Order Spin-Reorientation Phase Transition in a Metallic Kagome Ferromagnet. Adv. Funct. Mater.
**2020**, 30, 1909163. [Google Scholar] [CrossRef] - Kida, T.; Fenner, L.A.; Dee, A.A.; Terasaki, I.; Hagiwara, M.; Wills, A.S. The giant anomalous Hall effect in the ferromagnet Fe
_{3}Sn_{2}—A frustrated kagome metal. J. Physics: Condens. Matter**2011**, 23, 112205. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lynn, J.; Chen, Y.; Chang, S.; Zhao, Y.; Chi, S.; Ratcliff, W. Double-focusing thermal triple-axis spectrometer at the NCNR. J. Res. NIST
**2012**, 117, 61. [Google Scholar] [CrossRef] - Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B
**1993**, 192, 55–69. [Google Scholar] [CrossRef] - Lynn, J.W.; Fernandez-Baca, J.A. Neutron Scattering Studies of the Spin Dynamics of Amorphous Alloys. In The Magnetism of Amorphous Metals And Alloys; Ching, W.Y., Fernandez-Baca, J.A., Eds.; World Scientific Publishing Company: Singapore, 1995; Chapter 5; pp. 221–260. [Google Scholar]
- Lynn, J.W.; Erwin, R.W.; Borchers, J.A.; Huang, Q.; Santoro, A.; Peng, J.L.; Li, Z.Y. Unconventional Ferromagnetic Transition in La
_{1-x}Ca_{x}MnO_{3}. Phys. Rev. Lett.**1996**, 76, 4046–4049. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mitchell, P.W.; Cowley, R.A.; Higgins, S.A. The resolution function of triple-axis neutron spectrometers in the limit of small scattering angles. Acta Crystallogr. Sect. A
**1984**, 40, 152–160. [Google Scholar] [CrossRef][Green Version] - Zheludev, A. ResLib v3.4c. 2009. Available online: https://neutron.ethz.ch/Methods/reslib.html (accessed on 15 January 2021).
- Harris, A.B. Energy Width of Spin Waves in the Heisenberg Ferromagnet. Phys. Rev.
**1968**, 175, 674–679, Erratum in**1969**, 184, 606–606.. [Google Scholar] [CrossRef][Green Version] - Mattis, D.C. The Theory of Magnetism I: Statics and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 17. [Google Scholar]
- Collins, M.F. Magnetic Critical Scattering; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Collins, M.F.; Minkiewicz, V.J.; Nathans, R.; Passell, L.; Shirane, G. Critical and Spin-Wave Scattering of Neutrons from Iron. Phys. Rev.
**1969**, 179, 417–430. [Google Scholar] [CrossRef] - Minkiewicz, V.J.; Collins, M.F.; Nathans, R.; Shirane, G. Critical and Spin-Wave Fluctuations in Nickel by Neutron Scattering. Phys. Rev.
**1969**, 182, 624–631. [Google Scholar] [CrossRef] - Lynn, J.; Mook, H. Temperature dependence of the dynamic susceptibility of nickel. Phys. Rev. B
**1981**, 23, 198. [Google Scholar] [CrossRef] - Holstein, T.; Primakoff, H. Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet. Phys. Rev.
**1940**, 58, 1098–1113. [Google Scholar] [CrossRef] - Lin, Z.Z.; Chen, X. Tunable Massive Dirac Fermions in Ferromagnetic Fe
_{3}Sn_{2}Kagome Lattice. Phys. Status Solidi-(Rrl) Rapid Res. Lett.**2020**, 14, 1900705. [Google Scholar] [CrossRef] - Skomski, R.; Coey, J. Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater.
**2016**, 112, 3–8. [Google Scholar] [CrossRef][Green Version] - Xiao, Y.; Morvan, F.J.; He, A.N.; Wang, M.K.; Luo, H.B.; Jiao, R.B.; Xia, W.X.; Zhao, G.P.; Liu, J.P. Spin-reorientation transition induced magnetic skyrmion in Nd
_{2}Fe_{14}B magnet. Appl. Phys. Lett.**2020**, 117, 132402. [Google Scholar] [CrossRef] - Hirschberger, M.; Nakajima, T.; Gao, S.; Peng, L.; Kikkawa, A.; Kurumaji, T.; Kriener, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun.
**2019**, 10, 1–9. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Crystal structure and characterization of Fe${}_{3}$Sn${}_{2}$. The crystallographic space group is $R\overline{3}m$ with reported lattice parameters $a=b=5.344$ Å and $c=19.845$ Å [8]. (

**a**) View along the

**a**-axis. The solid black line represents the unit cell and Fe atoms are shown as the smaller green circles and Sn atoms are shown as the larger blue circles. A single Fe site is offset from any high symmetry position ($x/a=0.4949$, $y/b=0.5051$, and $z/c=0.1134$) leading to two different Fe-Fe bond lengths in the $ab$-plane (the so-called “breathing” kagome). Two Fe-Fe bond lengths are shown, where the shorter bond is in orange, and the longer bond is in green. (

**b**) A Sn-only layer viewed along the

**c**-axis, where the Sn atoms are arranged on a honeycomb lattice. (

**c**) An Fe-Sn layer viewed along the

**c**-axis, showing the breathing kagome lattice made up of Fe atoms. The axes labels for (

**c**) are the same as in (

**b**), and the parallelogram outlined by a solid black line for both panels represents the unit cell. (

**d**) Magnetization measurements taken at 770 K (solid lines) and 600 K (dashed lines). The samples show no signs of coercivity as the sweep down in field (blue lines) coincides with the sweep up (orange lines) in field. (

**e**) Zero-field cooled (ZFC) magnetic susceptibility measurement taken in a 0.1 T applied magnetic field. The derivative (right axis) clearly shows the ferromagnetic transition at ${T}_{C}\approx 665$ K. (

**f**) Neutron powder diffraction data taken above the magnetic transition at 680 K. The data demonstrate the structure is consistent with that reported. The upper set of red tic marks denote Fe${}_{3}$Sn${}_{2}$ Bragg peak positions and the lower set denote Al Bragg peak positions coming from the sample canister. A few small impurity peaks were observed but not identified, and these are marked by the

*****symbol.

**Figure 2.**(

**a**) A three-dimensional schematic of an isotropic parabolic spin wave dispersion near $Q=0$ and energy transfer, $E=0$. The dispersion is shown as the orange surface, and dashed blue lines show the direction of constant-Q scans cutting through the dispersion surface along E. (

**b**) A two-dimensional schematic demonstrating how the experiment captures the intensity from the spin wave excitations. The orange solid line represents the dispersion, $\hslash \omega \left(q\right)=\Delta +D\left(T\right){q}^{2}$, and the surrounding blue surface represents the full-width-at-half-maximum of the spread in energy of the dispersion, $\mathsf{\Gamma}\left(q\right)$, due to thermally induced magnon-magnon interactions. Dashed blue lines are examples of constant-Q scans made in the experiment. Overlayed on these lines are the instrumental resolution ellipses, $R(Q,E)$, along $Q=0.07$ Å${}^{-1}$ and $0.11$ Å${}^{-1}$. The left panel uses the refined values for the dispersion from the actual data at $T=580$ K in the ${E}_{i}=35$ meV experiment. The right panel uses the same parameters, but increased the gap to be $0.5$ meV in order to demonstrate the sensitivity of the technique to the size of the gap. Here, the scans performed during the experiment wouldn’t be able to reach the signal of the spin waves. (

**c**) The actual data at $T=580$ K in the ${E}_{i}=35$ meV experiment. The solid orange lines are the refined fits to the data, shown as blue circles. The three constant-Q scans are vertically offset from one another for clarity.

**Figure 3.**The temperature dependence of the spin wave stiffness parameter, $D\left(T\right)$. Data from both the ${E}_{i}=13.7$ meV and ${E}_{i}=35$ meV experiments were included in the power law fit, $D\left(T\right)={D}_{0}{\left(\right)}^{\frac{{T}_{C}-T}{{T}_{C}}}\nu -\beta $, shown as the dashed line. Only the lowest four temperatures were used in the Dyson fit, $D\left(T\right)={D}_{0}\left(\right)open="["\; close="]">1-A{\left(\right)}^{\frac{{k}_{B}T}{4\pi {D}_{0}}}5/2$, shown as the solid line.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dally, R.L.; Phelan, D.; Bishop, N.; Ghimire, N.J.; Lynn, J.W.
Isotropic Nature of the Metallic Kagome Ferromagnet Fe_{3}Sn_{2} at High Temperatures. *Crystals* **2021**, *11*, 307.
https://doi.org/10.3390/cryst11030307

**AMA Style**

Dally RL, Phelan D, Bishop N, Ghimire NJ, Lynn JW.
Isotropic Nature of the Metallic Kagome Ferromagnet Fe_{3}Sn_{2} at High Temperatures. *Crystals*. 2021; 11(3):307.
https://doi.org/10.3390/cryst11030307

**Chicago/Turabian Style**

Dally, Rebecca L., Daniel Phelan, Nicholas Bishop, Nirmal J. Ghimire, and Jeffrey W. Lynn.
2021. "Isotropic Nature of the Metallic Kagome Ferromagnet Fe_{3}Sn_{2} at High Temperatures" *Crystals* 11, no. 3: 307.
https://doi.org/10.3390/cryst11030307