Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain
Abstract
:1. Introduction
2. Realization and Characterization of BaxSr1−xTiO3 (BST)-Based Inter-Digitated Capacitor (IDC) Varactors
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems. Electronics 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Haupt, R.L.; Lanagan, M. Reconfigurable Antennas. IEEE Antennas Propag. Mag. 2013, 55, 49–61. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Sherman, V.O.; Astafiev, K.F.; Venkatesh, J.; Setter, N. Ferroelectric Materials for Microwave Tunable Applications. J. Electroceram. 2003, 11, 5–66. [Google Scholar] [CrossRef]
- De Paolis, R.; Coccetti, F.; Payan, S.; Maglione, M.; Guégan, G. Characterization of Ferroelectric BST MIM Capacitors up to 65 GHz for a Compact Phase Shifter at 60 GHz. In Proceedings of the European Microwave Conference, Rome, Italy, 6–9 October 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Velu, G.; Blary, K.; Burgnies, L.; Carru, J.; Delos, E.; Marteau, A.; Lippens, D. A 310/spl deg//3.6-dB K-band phaseshifter using paraelectric BST thin films. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 87–89. [Google Scholar] [CrossRef]
- Ghalem, A.; Ponchel, F.; Remiens, D.; Lasri, T. A 3.8 GHz tunable filter based on Ferroelectric Interdigitated Capacitors. In Proceedings of the IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy, Prague, Czech Republic, 21–25 July 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- AHaskou, A.; Sharaiha, A.; Collardey, S.; Borderon, C.; Ginestar, S.; Renoud, R.; Gundel, H.W. A reconfigurable miniaturized planar inverted-F antenna with integrated BaSrTiO3 capacitor. Microw. Opt. Technol. Lett. 2018, 60, 1511–1515. [Google Scholar] [CrossRef]
- Carballo, M.V.; Borah, D.; Kalkur, T. U-Slot Dual-band Frequency Reconfigurable Patch Antenna Tuned with Commercial Ferroelectric BST capacitors. In Proceedings of the IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, Tel-Aviv, Israel, 4–6 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Jiang, H.; Patterson, M.; Zhang, C.; Subramanyam, G. Frequency Agile Microstrip Patch Antenna Using Ferroelectric Thin Film Varactor Technology. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 June 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Li, H.-Y.; Chen, H.-P.; Chen, S.-C.; Tai, C.-H.; Fu, J.-S. A Tunable Slot Loop Antenna Using Interdigitated Ferroelectric Varactors. In Proceedings of the IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Subramanyam, G.; Cole, M.W.; Sun, N.X.; Kalkur, T.S.; Sbrockey, N.M.; Tompa, G.S.; Guo, X.; Chen, C.; Alpay, S.P.; Rossetti, G.A., Jr.; et al. Challenges and opportunities for multi-fonctional oxide thin films for voltage tunable radio frequency/microwave components. J. Appl. Phys. 2013, 114, 191301. [Google Scholar] [CrossRef] [Green Version]
- Vendik, O.G.; Hollmann, E.K.; Kozyrev, A.B.; Prudan, A.M. Ferroelectric Tuning of Planar and Bulk Microwave Devices. J. Supercond. Nov. Magn. 1999, 12, 325–338. [Google Scholar] [CrossRef]
- Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M.G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; et al. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique. J. Appl. Phys. 2016, 119, 144103. [Google Scholar] [CrossRef]
- Houzet, G.; Burgnies, L.; Velu, G.; Carru, J.-C.; Lippens, D. Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz. Appl. Phys. Lett. 2008, 93, 053507. [Google Scholar] [CrossRef]
- Saif, A.A.; Jamal, Z.A.Z.; Poopalan, P. Effect of the chemical composition at the memory behavior of Al/BST/SiO2/Si-gate-FET structure. Appl. Nanosci. 2011, 1, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Meyers, C.J.G.; Freeze, C.R.; Stemmer, S.; York, R.A. Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE. Appl. Phys. Lett. 2017, 111, 262903. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lin, Y.-C.; Chen, W.-C.; Fu, J.-S. Fabrication and Characterization of Ferroelectric Varactors for Tunable Wireless Front-Ends. In Proceedings of the Asia-Pacific Microwave Conference, Yokohama, Japan, 7–10 December 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Huitema, L.; Crunteanu, A.; Wong, H.; Ghalem, A.; Rammal, M. Frequency tunable antennas bases on innovative materials. In Proceedings of the IEEE International Conference on Computational Electromagnetics, Kumamoto, Japan, 8–10 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Ghalem, A.; Rammal, M.; Huitema, L.; Crunteanu, A.; Madrangeas, V.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.; Trupina, L.; et al. Ultra-high tunability of Ba(2/3)Sr(1/3)iO3 Thin Films at High-frequency domains under Low Electric Fields. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 504–506. [Google Scholar] [CrossRef]
- Borderon, C.; Ginestar, S.; Gundel, H.W.; Haskou, A.; Nadaud, K.; Renoud, R.; Sharaiha, A. Design and Development of a Tunable Ferroelectric Microwave Surface Mounted Device. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Ghalem, A.; Huitema, L.; Crunteanu, A.; Rammal, M.; Trupina, L.; Nedelcu, L.; Banciu, M.G.; Dutheil, P.; Constantinescu, C.; Marchet, P.; et al. Electrical transport properties and modelling of electrostrictive resonance phenomena in BaxSr1−xTiO3 thin films. J. Appl. Phys. 2016, 120, 184101. [Google Scholar] [CrossRef] [Green Version]
- Meyers, C.J.; Freeze, C.; Stemmer, S.; Lan, X.; Chau, L.; York, R.A. Two-port tunable interdigital capacitors fabricated on low-loss MBE-grown Ba0.29Sr0.71TiO3. In Proceedings of the IEEE MTT-S International Microwave Symposium, San Francisco, CA, USA, 22–27 May 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Al Ahmad, M.; Brunet, M.; Payan, S.; Michau, D.; Maglione, M.; Plana, R. Wide-Tunable Low-Field Interdigitated Barium Strontium Titanate Capacitors. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 769–771. [Google Scholar] [CrossRef]
- Huber, C.; Tréguer-Delapierre, M.; Elissalde, C.; Weill, F.; Maglione, M. Design of New Tunable Ferroelectric Composites. Ferroelectrics 2003, 294, 13–24. [Google Scholar] [CrossRef]
- Borderon, C.; Averty, D.; Seveno, R.; Gundel, H.W. Preparation and Characterization of Barium Strontium Titanate Thin Films by Chemical Solution Deposition. Ferroelectrics 2008, 362, 1–7. [Google Scholar] [CrossRef]
- Nadaud, K.; Borderon, C.; Gillard, R.; Fourn, E.; Renoud, R.; Gundel, H.W. Temperature stable BaSrTiO3 thin films suitable for microwave applications. Thin Solid Films 2015, 591, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Kirchoefer, S.W.; Pond, J.M.; Horwitz, J.S.; Sengupta, L. Strain-relieved Ba0.6Sr0.4TiO3 thin films for tunable microwave applications. J. Appl. Phys. 2002, 92, 1528–1535. [Google Scholar] [CrossRef]
Composition | Permittivity | Loss Tangent | |
---|---|---|---|
30 GHz | 60 GHz | % | |
BST 80–20 | |||
0 V | 435 | 400 | 11.5 |
80 V | 280 | 260 | 5.5 |
BST 50–50 | |||
0 V | 270 | 260 | 4 |
80 V | 200 | 195 | 3 |
Ref. | Composition | Tunability (%) @ 30 GHz | Electric Field (V/µm) | C0V (fF) | Frequency Range (GHz) | Q0V (@ n GHz) |
---|---|---|---|---|---|---|
This work | BST 80–20/ BST 50–50 | 35/25 40/30 | 13.3 16.7 | 140/85 | 0.1–110 | 7.7/25 (30) |
[16] | BST 29–71 | 54 @ 2.4 GHz | 50 | 220 | 0.1–40 | 13 (30) |
[22] | BST 29–71 | 47 | 53.3 | 330 | 0.1–40 | 8 (30) |
[23] | BST 60–40 | 63 | 1.4 | 200 | 0.1–50 | 50 (30) |
[27] | BST60–40 | 21 @ 8 GHz | 23–50 | 800 | 2.8 | 147 (8) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crunteanu, A.; Muzzupapa, V.; Ghalem, A.; Huitema, L.; Passerieux, D.; Borderon, C.; Renoud, R.; Gundel, H.W. Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals 2021, 11, 277. https://doi.org/10.3390/cryst11030277
Crunteanu A, Muzzupapa V, Ghalem A, Huitema L, Passerieux D, Borderon C, Renoud R, Gundel HW. Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals. 2021; 11(3):277. https://doi.org/10.3390/cryst11030277
Chicago/Turabian StyleCrunteanu, Aurelian, Vincent Muzzupapa, Areski Ghalem, Laure Huitema, Damien Passerieux, Caroline Borderon, Raphael Renoud, and Hartmut W. Gundel. 2021. "Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain" Crystals 11, no. 3: 277. https://doi.org/10.3390/cryst11030277
APA StyleCrunteanu, A., Muzzupapa, V., Ghalem, A., Huitema, L., Passerieux, D., Borderon, C., Renoud, R., & Gundel, H. W. (2021). Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals, 11(3), 277. https://doi.org/10.3390/cryst11030277