Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Nanoparticle Synthesis
2.2.1. Gold–Palladium Alloys
2.2.2. Gold–Palladium Core–Shells
2.2.3. Deposition of Au–Pd on Catalyst Supports
2.2.4. Working Electrode Preparation
2.3. Characterization
2.3.1. UV–Vis Spectroscopy and Electron Microscopy
2.3.2. X-ray Photoelectron Spectroscopy
2.3.3. Numerical Computation
2.3.4. Photocatalytic Measurements
2.3.5. Electrochemical Measurements
3. Results and Discussion
3.1. Synthesis and Characterization of Au–Pd Bimetallic NPs
3.2. Photocatalytic Ethanol Oxidation via Au–Pd NPs on TiO2 Supports
3.3. Electrochemical Ethanol Oxidation via Au–Pd NPs on Carbon Supports
3.4. Photoelectrochemical Ethanol Oxidation via Au–Pd NPs on TiO2 Supports
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, M.; Ma, J.; Liu, H.; Luo, N.; Zhao, Z.; Wang, F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal. 2018, 8, 2129–2165. [Google Scholar] [CrossRef]
- Lamy, C.; Belgsir, E.M.; Léger, J.M. Electrocatalytic Oxidation of Aliphatic Alcohols: Application to the Direct Alcohol Fuel Cell (DAFC). J. Appl. Electrochem. 2001, 31, 799–809. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 2927–2954. [Google Scholar] [CrossRef]
- Ortiz, N.; Zoellner, B.; Hong, S.J.; Ji, Y.; Wang, T.; Liu, Y.; Maggard, P.A.; Wang, G. Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs. ACS Appl. Mater. Interfaces 2017, 9, 25962–25969. [Google Scholar] [CrossRef] [PubMed]
- Boltersdorf, J.; Leff, A.C.; Forcherio, G.T.; McClure, J.P.; Lundgren, C.A. Surface Plasmon Resonant Gold-Palladium Bimetallic Nanoparticles for Promoting Catalytic Oxidation. MRS Adv. 2019, 4, 1877–1886. [Google Scholar] [CrossRef]
- Boltersdorf, J.; Forcherio, G.T.; McClure, J.P.; Baker, D.R.; Leff, A.C.; Lundgren, C. Visible Light-Promoted Plasmon Resonance to Induce “Hot” Hole Transfer and Photothermal Conversion for Catalytic Oxidation. J. Phys. Chem. C 2018, 122, 28934–28948. [Google Scholar] [CrossRef]
- McClure, J.P.; Grew, K.N.; Baker, D.R.; Gobrogge, E.; Das, N.; Chu, D. Harvesting Resonantly-Trapped Light for Small Molecule Oxidation Reactions at the Au/α-Fe2O3 Interface. Nanoscale 2018, 10, 7833–7850. [Google Scholar] [CrossRef]
- Jain, P.K. Taking the Heat off of Plasmonic Chemistry. J. Phys. Chem. C 2019, 123, 24347–24351. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wei, W.D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, S.W.; Moon, S.Y.; Park, J.Y. The Effect of Hot Electrons and Surface Plasmons on Heterogeneous Catalysis. J. Phys. Condens. Matter 2016, 28, 254002. [Google Scholar] [CrossRef]
- Tan, T.H.; Scott, J.; Ng, Y.H.; Taylor, R.A.; Aguey-Zinsou, K.F.; Amal, R. Understanding Plasmon and Band Gap Photoexcitation Effects on the Thermal-Catalytic Oxidation of Ethanol by TiO2-Supported Gold. ACS Catal. 2016, 6, 1870–1879. [Google Scholar] [CrossRef]
- Tan, T.H.; Scott, J.; Ng, Y.H.; Taylor, R.A.; Aguey-Zinsou, K.F.; Amal, R. C-C Cleavage by Au/TiO2 during Ethanol Oxidation: Understanding Bandgap Photoexcitation and Plasmonically Mediated Charge Transfer via Quantitative in Situ DRIFTS. ACS Catal. 2016, 6, 8021–8029. [Google Scholar] [CrossRef]
- Li, K.; Hogan, N.J.; Kale, M.J.; Halas, N.J.; Nordlander, P.; Christopher, P. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis. Nano Lett. 2017, 17, 3710–3717. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.V.; Norris, D.J. Tailoring Energy Transfer from Hot Electrons to Adsorbate Vibrations for Plasmon-Enhanced Catalysis. ACS Catal. 2017, 7, 8343–8350. [Google Scholar] [CrossRef]
- Jovic, V.; Chen, W.-T.; Sun-Waterhouse, D.; Blackford, M.G.; Idriss, H.; Waterhouse, G.I.N. Effect of Gold Loading and TiO2 Support Composition on the Activity of Au/TiO2 Photocatalysts for H2 Production from Ethanol–Water Mixtures. J. Catal. 2013, 305, 307–317. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y.; Mideksa, M.F.; Hou, K.; Zhao, W.; Wang, D.; Zhao, M.; Zhang, X.; et al. Boosting Hot Electrons in Hetero-Superstructures for Plasmon-Enhanced Catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972. [Google Scholar] [CrossRef]
- Joplin, A.; Hosseini Jebeli, S.A.; Sung, E.; Diemler, N.; Straney, P.J.; Yorulmaz, M.; Chang, W.S.; Millstone, J.E.; Link, S. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. ACS Nano 2017, 11, 12346–12357. [Google Scholar] [CrossRef]
- Sytwu, K.; Vadai, M.; Dionne, J.A. Bimetallic Nanostructures: Combining Plasmonic and Catalytic Metals for Photocatalysis. Adv. Phys. X 2019, 4, 389–422. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Xie, W.; Li, M.; Ng, Y.H.; Wang, D.W.; Dai, Y.; Huang, B.; Amal, R. Platinum Electrocatalysts with Plasmonic Nano-Cores for Photo-Enhanced Oxygen-Reduction. Nano Energy 2017, 41, 233–242. [Google Scholar] [CrossRef]
- Zheng, Z.; Tachikawa, T.; Majima, T. Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd-Au Nanorods Studied at the Single-Particle Level. J. Am. Chem. Soc. 2015, 137, 948–957. [Google Scholar] [CrossRef]
- Zheng, Z.; Tachikawa, T.; Majima, T. Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to near-Infrared Region. J. Am. Chem. Soc. 2014, 136, 6870–6873. [Google Scholar] [CrossRef]
- Koelling, D.; Freeman, A.; Mueller, F.; Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1963, 11. [Google Scholar] [CrossRef]
- Olson, J.; Dominguez-Medina, S.; Hoggard, A.; Wang, L.Y.; Chang, W.S.; Link, S. Optical Characterization of Single Plasmonic Nanoparticles. Chem. Soc. Rev. 2015, 44, 40–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef]
- Liang, Z.X.; Zhao, T.S.; Xu, J.B.; Zhu, L.D. Mechanism Study of the Ethanol Oxidation Reaction on Palladium in Alkaline Media. Electrochim. Acta 2009, 54, 2203–2208. [Google Scholar] [CrossRef]
- Fan, F.R.; Liu, D.Y.; Wu, Y.F.; Duan, S.; Xie, Z.X.; Jiang, Z.Y.; Tian, Z.Q. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-Octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 2008, 130, 6949–6951. [Google Scholar] [CrossRef] [PubMed]
- Dejarnette, D.; Roper, D.K. Electron Energy Loss Spectroscopy of Gold Nanoparticles on Graphene. J. Appl. Phys. 2014, 116, 054313. [Google Scholar] [CrossRef]
- Forcherio, G.T.; Baker, D.R.; Leff, A.C.; Boltersdorf, J.; McClure, J.P.; Grew, K.N.; Lundgren, C.A. Photodeposition of Pd onto Colloidal Au Nanorods by Surface Plasmon Excitation. J. Vis. Exp. 2019, 2019, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forcherio, G.T.; Baker, D.R.; Boltersdorf, J.; Leff, A.C.; McClure, J.P.; Grew, K.N.; Lundgren, C.A. Targeted Deposition of Platinum onto Gold Nanorods by Plasmonic Hot Electrons. J. Phys. Chem. C 2018, 122, 28901–28909. [Google Scholar] [CrossRef]
- McClure, J.P.; Boltersdorf, J.; Baker, D.R.; Farinha, T.G.; Dzuricky, N.; Villegas, C.E.P.; Rocha, A.R.; Leite, M.S. Structure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media. ACS Appl. Mater. Interfaces 2019, 11, 24919–24932. [Google Scholar] [CrossRef]
- Monyoncho, E.A.; Steinmann, S.N.; Michel, C.; Baranova, E.A.; Woo, T.K.; Sautet, P. Ethanol Electro-Oxidation on Palladium Revisited Using Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) and Density Functional Theory (DFT): Why Is It Difficult to Break the C-C Bond? ACS Catal. 2016, 6, 4894–4906. [Google Scholar] [CrossRef]
- Lai, S.C.S.; Kleijn, S.E.F.; Öztürk, F.T.Z.; Van Rees Vellinga, V.C.; Koning, J.; Rodriguez, P.; Koper, M.T.M. Effects of Electrolyte PH and Composition on the Ethanol Electro-Oxidation Reaction. Catal. Today 2010, 154, 92–104. [Google Scholar] [CrossRef]
- Kwon, Y.; Lai, S.C.S.; Rodriguez, P.; Koper, M.T.M. Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media: Base or Gold Catalysis? J. Am. Chem. Soc. 2011, 133, 6914–6917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, S.; Cai, W. Bin Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials. Catalysts 2015, 5, 1507–1534. [Google Scholar] [CrossRef]
- Kadkhodazadeh, S.; Anggoro Ardy Nugroho, F.; Langhammer, C.; Beleggia, M.; Wagner, J.B. Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics 2019, 6, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Hoggard, A.; Wang, L.Y.; Ma, L.; Fang, Y.; You, G.; Olson, J.; Liu, Z.; Chang, W.S.; Ajayan, P.M.; Link, S. Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene. ACS Nano 2013, 7, 11209–11217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draine, B.T.; Flatau, P.J. Discrete-Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Flatau, P.J.; Draine, B.T. Fast near Field Calculations in the Discrete Dipole Approximation for Regular Rectilinear Grids. Opt. Express 2012, 20, 1247–1252. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. Discrete-Dipole Approximation for Periodic Targets: Theory and Tests. J. Opt. Soc. Am. A 2008, 25, 2693. [Google Scholar] [CrossRef] [Green Version]
- Forcherio, G.T.; Boltersdorf, J.; McClure, J.P.; Leff, A.C.; Baker, D.R.; Lundgren, C.A. Directed Assembly of Bimetallic Nanoarchitectures by Interfacial Photocatalysis with Plasmonic Hot Electrons. In Nanophotonic Materials XV; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; p. 19. [Google Scholar] [CrossRef]
- Xinyin, S.; Frankel, D.J.; Hermanson, J.C.; Lapeyre, G.J.; Smith, R.J. Photoemission Studies of Ordered Pd Overlayers on Au(111): Implications for CO Chemisorption. Phys. Rev. B 1985, 32, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Bligaard, T.; Nørskov, J.K. Ligand Effects in Heterogeneous Catalysis and Electrochemistry. Electrochim. Acta 2007, 52, 5512–5516. [Google Scholar] [CrossRef]
- Su, R.; Tiruvalam, R.; Logsdail, A.J.; He, Q.; Downing, C.A.; Jensen, M.T.; Dimitratos, N.; Kesavan, L.; Wells, P.P.; Bechstein, R.; et al. Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production. ACS Nano 2014, 8, 3490–3497. [Google Scholar] [CrossRef]
- Foerster, B.; Joplin, A.; Kaefer, K.; Celiksoy, S.; Link, S.; Sönnichsen, C. Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano 2017, 11, 2886–2893. [Google Scholar] [CrossRef]
- Forcherio, G.T.; Dunklin, J.R.; Backes, C.; Vaynzof, Y.; Benamara, M.; Roper, D.K. Gold Nanoparticles Physicochemically Bonded onto Tungsten Disulfide Nanosheet Edges Exhibit Augmented Plasmon Damping. AIP Adv. 2017, 7, 075103. [Google Scholar] [CrossRef] [Green Version]
- Boltersdorf, J.; King, N.; Maggard, P.A. Flux-Mediated Crystal Growth of Metal Oxides: Synthetic Tunability of Particle Morphologies, Sizes, and Surface Features for Photocatalysis Research. CrystEngComm 2015, 17, 2225–2241. [Google Scholar] [CrossRef]
- Gao, F.; Goodman, D.W. Pd-Au Bimetallic Catalysts: Understanding Alloy Effects from Planar Models and (Supported) Nanoparticles. Chem. Soc. Rev. 2012, 41, 8009–8020. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Kim, M.; Kim, Y.; Kang, S.W.; Lee, J.H.; Han, S.W. Synthesis and Electrocatalytic Activity of Au-Pd Alloy Nanodendrites for Ethanol Oxidation. J. Phys. Chem. C 2010, 114, 7689–7693. [Google Scholar] [CrossRef]
- Wang, B.; Tao, L.; Cheng, Y.; Yang, F.; Jin, Y.; Zhou, C.; Yu, H.; Yang, Y. Electrocatalytic Oxidation of Small Molecule Alcohols over Pt, Pd, and Au Catalysts: The Effect of Alcohol’s Hydrogen Bond Donation Ability and Molecular Structure Properties. Catalysts 2019, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Song, H.M.; Anjum, D.H.; Sougrat, R.; Hedhili, M.N.; Khashab, N.M. Hollow Au@Pd and Au@Pt Core-Shell Nanoparticles as Electrocatalysts for Ethanol Oxidation Reactions. J. Mater. Chem. 2012, 22, 25003–25010. [Google Scholar] [CrossRef]
- Ksar, F.; Ramos, L.; Keita, B.; Nadjo, L.; Beaunier, P.; Remita, H. Bimetallic Palladium-Gold Nanostructures: Application in Ethanol Oxidation. Chem. Mater. 2009, 21, 3677–3683. [Google Scholar] [CrossRef]
- Zhu, L.D.; Zhao, T.S.; Xu, J.B.; Liang, Z.X. Preparation and Characterization of Carbon-Supported Sub-Monolayer Palladium Decorated Gold Nanoparticles for the Electro-Oxidation of Ethanol in Alkaline Media. J. Power Sources 2009, 187, 80–84. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Ma, D.; Zheng, Y.; Chen, M.; Wan, H. Disclosure of the Surface Composition of TiO2-Supported Gold-Palladium Bimetallic Catalysts by High-Sensitivity Low-Energy Ion Scattering Spectroscopy. ACS Catal. 2018, 8, 1790–1795. [Google Scholar] [CrossRef]
- Engelbrekt, C.; Crampton, K.T.; Fishman, D.A.; Law, M.; Apkarian, V.A. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core–Shell Nanocrystals. ACS Nano 2020, 14, 5061–5074. [Google Scholar] [CrossRef] [PubMed]
- Syrek, K.; Skolarczyk, M.; Zych, M.; Sołtys-Mróz, M.; Sulka, G.D. A Photoelectrochemical Sensor Based on Anodic TiO2 for Glucose Determination. Sensors 2019, 19, 4981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumortier, M.; Bosserez, T.; Rongé, J.; Martens, J.A.; Haussener, S. Combined Experimental-Numerical Analysis of Transient Phenomena in a Photoelectrochemical Water Splitting Cell. J. Phys. Chem. C 2016, 120, 3705–3714. [Google Scholar] [CrossRef] [Green Version]
- Gurudayal, G.; Chiam, S.Y.; Kumar, M.H.; Bassi, P.S.; Seng, H.L.; Barber, J.; Wong, L.H. Improving the Efficiency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese. ACS Appl. Mater. Interfaces 2014, 6, 5852–5859. [Google Scholar] [CrossRef]
- Molina, L.M.; Benito, A.; Alonso, J.A. Ab Initio Studies of Ethanol Dehydrogenation at Binary AuPd Nanocatalysts. Mol. Catal. 2018, 449, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Al-Zubeidi, A.; Hoener, B.S.; Collins, S.S.E.; Wang, W.; Kirchner, S.R.; Hosseini Jebeli, S.A.; Joplin, A.; Chang, W.S.; Link, S.; Landes, C.F. Hot Holes Assist Plasmonic Nanoelectrode Dissolution. Nano Lett. 2019, 19, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
Sample | µmol CO2/g | µmol CH3CHO/g |
---|---|---|
TiO2 | 87.11 | 0.60 |
Au | 132.32 | 0.26 |
Au0.9Pd0.1 | 147.09 | 0.37 |
Au0.75Pd0.25 | 176.76 | 0.63 |
Au0.5Pd0.5 | 221.67 | 0.96 |
Au0.25Pd0.75 | 226.43 | 0.92 |
Au0.1Pd0.9 | 228.62 | 0.84 |
Pd | 225.33 | 0.89 |
Au-10% AuPd | 164.99 | 0.36 |
Au-10% Pd | 283.28 | 1.06 |
Sample | Total µmol CO2/g | Total µmol CH3CHO/g | Total Rate (µmol CO2∙g−1∙h−1) | Total Rate (µmol CH3CHO∙g−1∙h−1) |
---|---|---|---|---|
Au | 292.35 | 1.82 | 73.09 | 0.45 |
Au0.9Pd0.1 | 394.63 | 1.84 | 98.66 | 0.46 |
Au0.5Pd0.5 | 455.67 | 3.86 | 113.92 | 0.96 |
Pd | 327.98 | 3.57 | 82.00 | 0.89 |
Au-10% AuPd | 403.13 | 1.61 | 100.78 | 0.40 |
Au-10% Pd | 390.72 | 2.28 | 97.68 | 0.57 |
Composition | Onset (V) | VF (V) | IF (mA/cm2) | VR (V) | IR (mA/cm2) |
---|---|---|---|---|---|
Au | 0.72 | 1.23 | 1.51 | 1.10 | 0.56 |
Au0.9Pd0.1 | 0.35 | 0.82 | 9.26 | 0.79 | 10.75 |
1.17 | 3.81 | 1.03 | 0.04 | ||
AuPd | 0.32 | 0.79 | 29.14 | 0.66 | 35.74 |
Pd | 0.30 | 0.77 | 30.80 | 0.66 | 35.74 |
Au-10% AuPd | 0.40 | 0.82 | 3.37 | 0.78 | 4.85 |
1.18 | 1.60 | ||||
Au-10% Pd | 0.52 | 0.94 | 1.55 | 0.80 | 1.61 |
1.21 | 2.96 | 1.08 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boltersdorf, J.; Leff, A.C.; Forcherio, G.T.; Baker, D.R. Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation. Crystals 2021, 11, 226. https://doi.org/10.3390/cryst11030226
Boltersdorf J, Leff AC, Forcherio GT, Baker DR. Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation. Crystals. 2021; 11(3):226. https://doi.org/10.3390/cryst11030226
Chicago/Turabian StyleBoltersdorf, Jonathan, Asher C. Leff, Gregory T. Forcherio, and David R. Baker. 2021. "Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation" Crystals 11, no. 3: 226. https://doi.org/10.3390/cryst11030226
APA StyleBoltersdorf, J., Leff, A. C., Forcherio, G. T., & Baker, D. R. (2021). Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation. Crystals, 11(3), 226. https://doi.org/10.3390/cryst11030226