## **Supporting Information**

## Plasmonic Au-Pd Bimetallic Nanocatalysts for Hot Carrier Enhanced Photocatalytic and Electrochemical Ethanol Oxidation

Jonathan Boltersdorf,<sup>\*,1</sup> Asher C. Leff,<sup>1,2</sup> Gregory T. Forcherio<sup>1,3</sup>, and David R. Baker<sup>1</sup>

<sup>1</sup>United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD 20783-1138, USA

<sup>2</sup>General Technical Services, Adelphi, MD 20783-1138, USA

<sup>3</sup>Electro-Optic Technology Division, Naval Surface Warfare Center, Crane, IN 47522 USA



**Figure S1.** EDX spectra representative of  $Au_{1-x}Pd_x$  NPs for (a) Au, (b)  $Au_{0.9}Pd_{0.1}$ , (c)  $Au_{0.75}Pd_{0.25}$ , (d)  $Au_{0.5}Pd_{0.5}$ , (e)  $Au_{0.25}Pd_{0.75}$ , and (f) Pd NPs on a TiO<sub>2</sub> support.



Figure S2. EDX spectra representative of Au<sub>Core</sub> NPs with (a) 10% Au<sub>0.5</sub>Pd<sub>0.5</sub>.shell, (b) 5% Au<sub>0.5</sub>Pd<sub>0.5</sub>.shell, (c) 10% Pd.shell, and (d) 5% Pd.shell.



**Figure S3.** XPS survey scans, Au 4f and Pd 3d peaks of the (a-c) Au<sub>1-x</sub>Pd<sub>x</sub> alloy and (d-f) Au<sub>Core</sub><sup>-</sup> Au<sub>1-x</sub>Pd<sub>x</sub>. *Shell* NPs.



Figure S4. XPS scans of the VB region for (a-b) Au<sub>1-x</sub>Pd<sub>x</sub> alloy and (c-d) Au<sub>Core</sub> Au<sub>1-x</sub>Pd<sub>x.Shell</sub> NPs.



Figure S5. UV-Vis extinction spectra of Au<sub>1-x</sub>Pd<sub>x</sub> NPs after synthesis at (a) 30 °C and (b) 100 °C.



**Figure S6.** UV-Vis extinction spectra of Au<sub>Core</sub> NPs with (a) 1-10% Au<sub>0.5</sub>Pd<sub>0.5</sub>. Shell and (b) 1-10% Pd. Shell after synthesis at 30 °C.



Figure S7. UV-Vis DRS of Au<sub>Core</sub> NPs with 1-10% Au<sub>0.5</sub>Pd<sub>0.5</sub>.shell and 1-10% Pd.shell on TiO<sub>2</sub> supports.



**Figure S8.** DDA simulated absorption spectra for spherical  $Au_{1-x}Pd_x$  and  $Au_{Core}-Au_{1-x}Pd_x$ . Shell NPs (c) without TiO<sub>2</sub> and (d) in contact with TiO<sub>2</sub>. Rescaled spectra from Figure 4 in manuscript for clarity of nanomaterials with simulated low absorbance.



**Figure S9.** Electrochemical CVs in 1 M KOH supporting electrolyte (pH~14) catalysed by 60  $\mu$ g of 20 wt% Au<sub>*l-x*</sub>Pd<sub>*x*</sub> and Au<sub>Core</sub>-Au<sub>*l-x*</sub>Pd<sub>*x*</sub>. Shell NPs dispersed on carbon supports deposited onto a rotating disk, glassy carbon working electrode in the dark. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively.



**Figure S10.** Electrochemical CVs in 1 M KOH supporting electrolyte (pH~14) catalysed by 60  $\mu$ g of 1 wt% Au<sub>*l*-x</sub>Pd<sub>x</sub> and Au<sub>Core</sub>-Au<sub>*l*-x</sub>Pd<sub>x</sub>.shell NPs dispersed on TiO<sub>2</sub> supports deposited onto a rotating disk, glassy carbon working electrode in the dark. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively.



**Figure S11.** Electrochemical CVs of EtOH oxidation catalyzed by 1 wt%  $Au_{1-x}Pd_x$  and  $Au_{Core-Au_{1-x}Pd_x.shell}$  NPs dispersed on TiO<sub>2</sub> deposited onto a rotating disk, glassy carbon working electrode immersed into 0.5 M EtOH with 1 M KOH supporting electrolyte. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively. CVs of the current density in the (a) dark and under (b) AM1.5G irradiation.



**Figure S12.** Electrochemical CVs of EtOH oxidation catalyzed by 1 wt% AuPd and Pd NPs dispersed on TiO<sub>2</sub> deposited onto a rotating disk, glassy carbon working electrode immersed into 0.5 M EtOH with 1 M KOH supporting electrolyte. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively. CVs of the mass activity (Pd) in the dark and under AM1.5G irradiation.

| Composition                           | Experimental | Calculated      | Experimental | Calculated     |
|---------------------------------------|--------------|-----------------|--------------|----------------|
| Composition                           | w/o T        | iO <sub>2</sub> | w/ Ti        | O <sub>2</sub> |
| Au                                    | 526          | 521             | 547          | 528            |
| $Au_{0.9}Pd_{0.1}$                    | 526          | -               | 545          | -              |
| Au <sub>0.75</sub> Pd <sub>0.25</sub> | -            | -               | 539          | -              |
| Au <sub>0.5</sub> Pd <sub>0.5</sub>   | -            | -               | 532          | -              |
| Au <sub>0.25</sub> Pd <sub>0.75</sub> | -            | -               | 512          | -              |
| Au <sub>0.1</sub> Pd <sub>0.9</sub>   | -            | -               | 452          | -              |
| Pd                                    | -            | -               | 450          | -              |
| Au-10% AuPd                           | 529          | 519             | 550          | 522            |
| Au-5% AuPd                            | 535          | -               | 550          | -              |
| Au-2% AuPd                            | 535          | -               | 553          | -              |
| Au-1% AuPd                            | 534          | -               | 550          | -              |
| Au-10% Pd                             | 530          | 506             | 547          | 508            |
| Au-5% Pd                              | 530          | -               | 539          | -              |
| Au-2% Pd                              | 530          | -               | 548          | -              |
| Au-1% Pd                              | 530          | -               | 543          | -              |

**Table S1.** Experimental and DDA calculated SPR peaks ( $\lambda_{Max}$ ) for Au<sub>1-x</sub>Pd<sub>x</sub> and Au<sub>Core</sub>-Au<sub>1-x</sub>Pd<sub>x</sub>. Shell NPs without TiO<sub>2</sub> and in contact with TiO<sub>2</sub>

| Sample                                | µmol CO <sub>2</sub> /g | µmol CH3CHO/g |
|---------------------------------------|-------------------------|---------------|
| TiO <sub>2</sub>                      | 87.11                   | 0.60          |
| Au                                    | 132.32                  | 0.26          |
| $Au_{0.9}Pd_{0.1}$                    | 147.09                  | 0.37          |
| Au0.75Pd0.25                          | 176.76                  | 0.63          |
| Au0.5Pd0.5                            | 221.67                  | 0.96          |
| Au <sub>0.25</sub> Pd <sub>0.75</sub> | 226.43                  | 0.92          |
| Au0.1Pd0.9                            | 228.62                  | 0.84          |
| Pd                                    | 225.33                  | 0.89          |
| Au-10% AuPd                           | 164.99                  | 0.36          |
| Au-5% AuPd                            | 162.70                  | 0.27          |
| Au-2% AuPd                            | 152.13                  | 0.19          |
| Au-1% AuPd                            | 153.65                  | 0.17          |
| Au-10% Pd                             | 283.28                  | 1.06          |
| Au-5% Pd                              | 254.12                  | 0.66          |
| Au-2% Pd                              | 249.02                  | 0.72          |
| Au-1% Pd                              | 222.72                  | 0.63          |

**Table S2.** Mass activity of 1 wt%  $Au_{l-x}Pd_x$  and  $Au_{Core}-Au_{l-x}Pd_x$ . Shell NPs on TiO<sub>2</sub> supports under AM1.5G irradiation for 1 h determined from GC-MS-MHE analysis.

**Table S3.** Photocatalytic mass activities of 1 wt%  $Au_{1-x}Pd_x$  and  $Au_{Core}-Au_{1-x}Pd_x$ . Shell NPs for select compositions on TiO<sub>2</sub> supports under AM1.5G for 4 h and visible-light (>420 nm) for 1 h, determined from GC-MS-MHE analysis.

| Samula             | AM1.5G for 4h           |               | >420 nm for 1 h         |               |
|--------------------|-------------------------|---------------|-------------------------|---------------|
| Sample             | µmol CO <sub>2</sub> /g | µmol CH3CHO/g | µmol CO <sub>2</sub> /g | µmol CH3CHO/g |
| TiO <sub>2</sub>   |                         |               | 15.22                   | 0.01          |
| Au                 | 292.35                  | 1.82          | 19.24                   | 0.19          |
| $Au_{0.9}Pd_{0.1}$ | 394.63                  | 1.84          | 21.64                   | 0.01          |
| Au0.5Pd0.5         | 455.67                  | 3.86          | 30.34                   | 0.02          |
| Pd                 | 327.98                  | 3.57          | 32.63                   | 0.09          |
| Au-10% AuPd        | 403.13                  | 1.61          | 30.03                   | 0.03          |
| Au-10% Pd          | 390.72                  | 2.28          | 25.45                   | 0.02          |

**Table S4.** Photo-induced current densities for 1 wt% Au<sub>1-x</sub>Pd<sub>x</sub> and Au<sub>Core</sub>-Au<sub>1-x</sub>Pd<sub>x</sub>. Shell NPs dispersed on TiO<sub>2</sub> from chronoamperometry held at +0.72 V (vs. RHE) under 250 s on/off chopping of solar-simulated AM1.5G irradiation. Catalysts deposited onto a rotating disk, glassy carbon working electrode immersed into 0.5 M EtOH with 1 M KOH supporting electrolyte. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively.

| Composition                          | $\frac{\text{Max I}_{hv}}{(\mu \text{A/cm}^2)^a}$ | Avg. $I_{hv}$<br>$(\mu A/cm^2)^b$ | $I_{hv} (\mu A/cm^2)$<br>@ 1900 s |
|--------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------|
| TiO <sub>2</sub>                     | 3.09                                              | 2.29                              | 3.09                              |
| Au-TiO <sub>2</sub>                  | 1.46                                              | 1.31                              | 0.69                              |
| $Au_{0.9}Pd_{0.1}$ -TiO <sub>2</sub> | 1.39                                              | 1.31                              | 0.74                              |
| AuPd-TiO <sub>2</sub>                | 9.55                                              | 8.32                              | 6.86                              |
| Pd-TiO <sub>2</sub>                  | 5.85                                              | 4.74                              | 4.93                              |
| Au-10% AuPd-TiO <sub>2</sub>         | 2.12                                              | 1.43                              | 0.86                              |
| Au-10% Pd-TiO <sub>2</sub>           | 2.17                                              | 1.97                              | 0.96                              |

<sup>a</sup>Overall maximum photocurrent magnitude measured.

<sup>b</sup>Average photocurrent magnitude measured during the first "light on" step.

**Table S5.** Photo-induced mass activities (Pd) for 1 wt%  $Au_{1-x}Pd_x$  and  $Au_{Core}-Au_{1-x}Pd_x$ . Shell NPs dispersed on TiO<sub>2</sub> from chronoamperometry held at +0.72 V (vs. RHE) under 250 s on/off chopping of solar-simulated AM1.5G irradiation. Catalysts deposited onto a rotating disk, glassy carbon working electrode immersed into 0.5 M EtOH with 1 M KOH supporting electrolyte. Reference and counter electrodes were Ag/AgCl and a Pt coil, respectively.

| Composition                  | Max I <sub>hv</sub><br>(mA/mg <sub>Pd</sub> ) <sup>a</sup> | Avg. I <sub>hv</sub><br>(mA/mg <sub>Pd</sub> ) <sup>b</sup> | Ihv (mA/mgPd)<br>@ 1900 s |
|------------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------|
| Au0.9Pd0.1-TiO2              | 10.30                                                      | 9.76                                                        | 5.53                      |
| AuPd-TiO <sub>2</sub>        | 14.20                                                      | 12.40                                                       | 10.20                     |
| Pd-TiO <sub>2</sub>          | 4.35                                                       | 3.53                                                        | 3.67                      |
| Au-10% AuPd-TiO <sub>2</sub> | 15.70                                                      | 10.60                                                       | 6.42                      |
| Au-10% Pd-TiO <sub>2</sub>   | 16.10                                                      | 14.70                                                       | 7.15                      |

<sup>a</sup>Overall maximum photocurrent magnitude measured.

<sup>b</sup>Average photocurrent magnitude measured during the first "light on" step.