Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Analysis and Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balestra, F.; Cristoloveanu, S.; Benachir, M.; Brini, J.; Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 1987, 8, 410–412. [Google Scholar] [CrossRef]
- Walsh, S.T.; Boylan, R.L.; McDermott, C.; Paulson, A. The semiconductor silicon industry roadmap: Epochs driven by the dynamics between disruptive technologies and core competencies. Technol. Forecast. Soc. Chang. 2005, 72, 213–236. [Google Scholar] [CrossRef]
- Khang, D.Y.; Jiang, H.; Huang, Y.; Rogers, J.A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 2006, 311, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, A.; Green, M.A.; Ferrazza, F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993. [Google Scholar] [CrossRef]
- Notomi, M.; Shinya, A.; Mitsugi, S.; Kira, G.; Kuramochi, E.; Tanabe, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 2005, 13, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Agnese, R.; Ahmed, Z.; Anderson, A.J.; Arrenberg, S.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D.A.; Billard, J.; Borgland, A.; Brandt, D.; et al. Silicon Detector Dark Matter Results from the Final Exposure of CDMS II. Phys. Rev. Lett. 2013, 111, 251301. [Google Scholar] [CrossRef]
- Siemens, M.E.; Li, Q.; Yang, R.; Nelson, K.A.; Anderson, E.H.; Murnane, M.M.; Kapteyn, H.C. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 2010, 9, 26–30. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, L.; Minnich, A.J.; Dresselhaus, M.S.; Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 2015, 10, 701–706. [Google Scholar] [CrossRef]
- Zhou, J.; Shin, H.D.; Chen, K.; Song, B.; Duncan, R.A.; Xu, Q.; Maznev, A.A.; Nelson, K.A.; Chen, G. Direct observation of large electron–phonon interaction effect on phonon heat transport. Nat. Commun. 2020, 11, 6040. [Google Scholar] [CrossRef]
- Koh, Y.K.; Cahill, D.G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 2007, 76, 075207. [Google Scholar] [CrossRef]
- Da Cruz, C.A.; Li, W.; Katcho, N.A.; Mingo, N. Role of phonon anharmonicity in time-domain thermoreflectance measurements. Appl. Phys. Lett. 2012, 101, 083108. [Google Scholar] [CrossRef]
- Regner, K.T.; Sellan, D.P.; Su, Z.; Amon, C.H.; McGaughey, A.J.H.; Malen, J.A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 2013, 4, 1640. [Google Scholar] [CrossRef]
- Regner, K.T.; Freedman, J.P.; Malen, J.A. Advances in Studying Phonon Mean Free Path Dependent Contributions to Thermal Conductivity. Nanoscale Microscale Thermophys. Eng. 2015, 19, 183–205. [Google Scholar] [CrossRef]
- Sheu, Y.M.; Lee, S.H.; Wahlstrand, J.K.; Walko, D.A.; Landahl, E.C.; Arms, D.A.; Reason, M.; Goldman, R.S.; Reis, D.A. Thermal transport in a semiconductor heterostructure measured by time-resolved X-ray diffraction. Phys. Rev. B 2008, 78, 045317. [Google Scholar] [CrossRef]
- Lee, S.; Jo, W.; DiChiara, A.; Holmes, T.; Santowski, S.; Cho, Y.; Landahl, E. Probing Electronic Strain Generation by Separated Electron-Hole Pairs Using Time-Resolved X-ray Scattering. Appl. Sci. 2019, 9, 4788. [Google Scholar] [CrossRef]
- Jo, W.; Landahl, E.C.; DiChiara, A.D.; Walko, D.A.; Lee, S. Measuring femtometer lattice displacements driven by free carrier diffusion in a polycrystalline semiconductor using time-resolved X-ray scattering. Appl. Phys. Lett. 2018, 113, 032107. [Google Scholar] [CrossRef]
- Lee, S.; Williams, G.J.; Campana, M.I.; Walko, D.A.; Landahl, E.C. Picosecond X-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons. Sci. Rep. 2016, 6, 19140. [Google Scholar] [CrossRef]
- Wen, H.; Chen, P.; Cosgriff, M.P.; Walko, D.A.; Lee, J.H.; Adamo, C.; Schaller, R.D.; Ihlefeld, J.F.; Dufresne, E.M.; Schlom, D.G.; et al. Electronic Origin of Ultrafast Photoinduced Strain in BiFeO3. Phys. Rev. Lett. 2013, 110, 037601. [Google Scholar] [CrossRef] [PubMed]
- Schick, D.; Herzog, M.; Wen, H.; Chen, P.; Adamo, C.; Gaal, P.; Schlom, D.G.; Evans, P.G.; Li, Y.; Bargheer, M. Localized Excited Charge Carriers Generate Ultrafast Inhomogeneous Strain in the Multiferroic BiFeO3. Phys. Rev. Lett. 2014, 112, 097602. [Google Scholar] [CrossRef]
- Juvé, V.; Gu, R.; Gable, S.; Maroutian, T.; Vaudel, G.; Matzen, S.; Chigarev, N.; Raetz, S.; Gusev, V.E.; Viret, M.; et al. Ultrafast light-induced shear strain probed by time-resolved X-ray diffraction: Multiferroic BiFeO3 as a case study. Phys. Rev. B 2020, 102, 220303. [Google Scholar] [CrossRef]
- Von Reppert, A.; Willig, L.; Pudell, J.E.; Rössle, M.; Leitenberger, W.; Herzog, M.; Ganss, F.; Hellwig, O.; Bargheer, M. Ultrafast laser generated strain in granular and continuous FePt thin films. Appl. Phys. Lett. 2018, 113, 123101. [Google Scholar] [CrossRef]
- Pudell, J.; Maznev, A.A.; Herzog, M.; Kronseder, M.; Back, C.H.; Malinowski, G.; von Reppert, A.; Bargheer, M. Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction. Nat. Commun. 2018, 9, 3335. [Google Scholar] [CrossRef]
- Wall, S.; Yang, S.; Vidas, L.; Chollet, M.; Glownia, J.M.; Kozina, M.; Katayama, T.; Henighan, T.; Jiang, M.; Miller, T.A.; et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 2018, 362, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Zalden, P.; Quirin, F.; Schumacher, M.; Siegel, J.; Wei, S.; Koc, A.; Nicoul, M.; Trigo, M.; Andreasson, P.; Enquist, H.; et al. Femtosecond X-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science 2019, 364, 1062–1067. [Google Scholar] [CrossRef]
- Wie, C.R.; Tombrello, T.A.; Vreeland, T. Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis. J. Appl. Phys. 1986, 59, 3743–3746. [Google Scholar] [CrossRef]
- Jo, W.; Lee, S.; Eom, I.; Landahl, E.C. Synchronizing femtosecond laser with X-ray synchrotron operating at arbitrarily different frequencies. Rev. Sci. Instrum. 2014, 85, 125112. [Google Scholar] [CrossRef]
- Van de Walle, C.G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883. [Google Scholar] [CrossRef] [PubMed]
- Rämer, A.; Osmani, O.; Rethfeld, B. Laser damage in silicon: Energy absorption, relaxation, and transport. J. Appl. Phys. 2014, 116, 053508. [Google Scholar] [CrossRef]
- Williams, G.J.; Lee, S.; Walko, D.A.; Watson, M.A.; Jo, W.; Lee, D.R.; Landahl, E.C. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved X-ray scattering. Sci. Rep. 2016, 6, 39506. [Google Scholar] [CrossRef]
- Paul, W.; Warschauer, D. Optical properties of semiconductors under hydrostatic pressure—II. Silicon. J. Phys. Chem. Solids 1958, 5, 102–106. [Google Scholar] [CrossRef]
- Hu, H.; Liu, M.; Wang, Z.F.; Zhu, J.; Wu, D.; Ding, H.; Liu, Z.; Liu, F. Quantum Electronic Stress: Density-Functional-Theory Formulation and Physical Manifestation. Phys. Rev. Lett. 2012, 109, 055501. [Google Scholar] [CrossRef] [PubMed]
- Van Driel, H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 1987, 35, 8166–8176. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.K.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217–224. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Kapeliovich, B.L.; Perelman, T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Zhurnal Eksp. Teor. Fiz. 1974, 66, 776–781. [Google Scholar]
- Ames, W.F. Numerical Solution of Partial Differential Equations: Theory, Tools and Case Studies. SIAM Rev. 1986, 28, 92. [Google Scholar] [CrossRef]
- DeCamp, M.F.; Reis, D.A.; Cavalieri, A.; Bucksbaum, P.H.; Clarke, R.; Merlin, R.; Dufresne, E.M.; Arms, D.A.; Lindenberg, A.M.; MacPhee, A.G.; et al. Transient Strain Driven by a Dense Electron-Hole Plasma. Phys. Rev. Lett. 2003, 91, 165502. [Google Scholar] [CrossRef]
- Young, J.F.; van Driel, H.M. Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects. Phys. Rev. B 1982, 26, 2147–2158. [Google Scholar] [CrossRef]
- Rosling, M.; Bleichner, H.; Jonsson, P.; Nordlander, E. The ambipolar diffusion coefficient in silicon: Dependence on excess-carrier concentration and temperature. J. Appl. Phys. 1994, 76, 2855–2859. [Google Scholar] [CrossRef]
- Lundstrom, M. Fundamentals of Carrier Transport, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mouskeftaras, A.; Chanal, M.; Chambonneau, M.; Clady, R.; Utéza, O.; Grojo, D. Direct measurement of ambipolar diffusion in bulk silicon by ultrafast infrared imaging of laser-induced microplasmas. Appl. Phys. Lett. 2016, 108, 041107. [Google Scholar] [CrossRef]
- Jo, W.; Landahl, E.C.; Kim, S.; Lee, D.R.; Lee, S. Delayed auger recombination in silicon measured by time-resolved X-ray scattering. Curr. Appl. Phys. 2018, 18, 1230–1234. [Google Scholar] [CrossRef]
- Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Hegde, R.S.; Reason, M.; Goldman, R.S.; Reis, D.A. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-ray Diffraction Measurements. Phys. Rev. Lett. 2005, 95, 246104. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Tanaka, Y.; Kirimura, T.; Tsukuda, N.; Kuramoto, E.; Ishikawa, T. Acoustic Pulse Echoes Probed with Time-Resolved X-ray Triple-Crystal Diffractometry. Phys. Rev. Lett. 2006, 96, 115505. [Google Scholar] [CrossRef]
- Schroder, D. Carrier lifetimes in silicon. IEEE Trans. Electron Devices 1997, 44, 160–170. [Google Scholar] [CrossRef]
- Huldt, L. Band-to-band auger recombination in indirect gap semiconductors. Phys. Status Solidi 1971, 8, 173–187. [Google Scholar] [CrossRef]
- Conradt, R.; Aengenheister, J. Minority carrier lifetime in highly doped Ge. Solid State Commun. 1972, 10, 321–323. [Google Scholar] [CrossRef]
- Okada, Y.; Tokumaru, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. 1984, 56, 314–320. [Google Scholar] [CrossRef]
- Okhotin, A.S.; Pushkarskij, A.S.; Gorbachev, V.V. Thermophysical Properties of Semiconductors; Atomizdat: Moscow, Russia, 1972. [Google Scholar]
- Wortman, J.J.; Evans, R.A. Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium. J. Appl. Phys. 1965, 36, 153–156. [Google Scholar] [CrossRef]
- Dziewior, J.; Schmid, W. Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 1977, 31, 346–348. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Asheghi, M.; Kurabayashi, K.; Kasnavi, R.; Goodson, K.E. Thermal conduction in doped single-crystal silicon films. J. Appl. Phys. 2002, 91, 5079–5088. [Google Scholar] [CrossRef]
- Ohishi, Y.; Xie, J.; Miyazaki, Y.; Aikebaier, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S.; Uchida, N.; Tada, T. Thermoelectric properties of heavily boron- and phosphorus-doped silicon. Jpn. J. Appl. Phys. 2015, 54, 071301. [Google Scholar] [CrossRef]
- Makinson, R.E.B. The thermal conductivity of metals. Math. Proc. Camb. Philos. Soc. 1938, 34, 474–497. [Google Scholar] [CrossRef]
- Klemens, P. The Lattice Component of the Thermal Conductivity of Metals and Alloys. Aust. J. Phys. 1954, 7, 57–63. [Google Scholar] [CrossRef]
- Yang, J.; Morelli, D.T.; Meisner, G.P.; Chen, W.; Dyck, J.S.; Uher, C. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1−xNixSb3. Phys. Rev. B 2002, 65, 094115. [Google Scholar] [CrossRef]
- Shi, X.; Pei, Y.; Snyder, G.J.; Chen, L. Optimized thermoelectric properties of Mo3Sb7−xTex with significant phonon scattering by electrons. Energy Environ. Sci. 2011, 4, 4086–4095. [Google Scholar] [CrossRef]
- Liao, B.; Qiu, B.; Zhou, J.; Huberman, S.; Esfarjani, K.; Chen, G. Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study. Phys. Rev. Lett. 2015, 114, 115901. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhou, J.; Liu, T.H.; Chen, G. Effect of electron-phonon interaction on lattice thermal conductivity of SiGe alloys. Appl. Phys. Lett. 2019, 115, 023903. [Google Scholar] [CrossRef]
Parameter | Used Value | Literature Value |
---|---|---|
One photon absorption coefficient ( [cm−1]) | [28] | [28] |
Two photon absorption coefficient ( [cm/GW]) | 9 [28] | 9 [28] |
Deformation potential coefficient ( [eV/Pa]) | [30] | |
Ambipolar diffusion coefficient ( [cm2/s]) | 2.4 | 2.5 [40] |
Radiative recombination rate ( [cm3/s]) | [44] | [44] |
Auger recombination rate ( [cm6/s]) | ∼ [41,44,45,46] | |
Thermal expansion coefficient ( [C°−1] ) | [47] | [47] |
Specific heat ( [J/gC°]) | 0.7 [48] | 0.7 [48] |
Young’s Modulus for [100] ( [GPa]) | 130 [49] | 130 [49] |
Bulk Modulus ( [GPa]) | 98 [49] | 98 [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, W.; Cho, Y.C.; Kim, S.; Landahl, E.C.; Lee, S. Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction. Crystals 2021, 11, 186. https://doi.org/10.3390/cryst11020186
Jo W, Cho YC, Kim S, Landahl EC, Lee S. Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction. Crystals. 2021; 11(2):186. https://doi.org/10.3390/cryst11020186
Chicago/Turabian StyleJo, Wonhyuk, Yong Chan Cho, Seongheun Kim, Eric Carl Landahl, and Sooheyong Lee. 2021. "Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction" Crystals 11, no. 2: 186. https://doi.org/10.3390/cryst11020186
APA StyleJo, W., Cho, Y. C., Kim, S., Landahl, E. C., & Lee, S. (2021). Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction. Crystals, 11(2), 186. https://doi.org/10.3390/cryst11020186