Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of TiO2 Nanoparticles
2.3. Characterization
2.4. Photocatalytic Degradation Study
2.5. Oxidation of Benzaldehyde to Benzoic Acid
2.6. Reduction of 4-Nitrophenol to 4-Aminophenol
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM–EDX Analysis
3.3. UV–DRS Analysis
3.4. FTIR Analysis
3.5. Photocatalytic Degradation of the Dye Solution
Effect of Catalyst Weight
3.6. Oxidation of Benzaldehyde to Benzoic Acid
3.7. Reduction of 4-Nitrophenol to 4-Aminophenol
3.8. Reusability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lavacchi, A.; Bellini, M.; Berretti, E.; Chen, Y.; Marchionni, A.; Miller, H.A.; Vizza, F. Titanium dioxide nanomaterials in electrocatalysis for energy. Curr. Opin. Electrochem. 2021, 28, 100720. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial activities of chi-tosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef]
- Manikandan, V.; Elancheran, R.; Revathi, P.; Vanitha, U.; Suganya, P.; Krishnasamy, K. Synthesis, characterization, photocata-lytic and electrochemical studies of reduced graphene oxide doped nickel oxide nanocomposites. Asian J. Chem. 2021, 33, 411–422. [Google Scholar] [CrossRef]
- Thirugnanasambandham, K.; Sivakumar, V. Modeling and optimization of treatment of milk industry wastewater using chitosan–zinc oxide nanocomposite. Desalination Water Treat. 2015, 57, 18630–18638. [Google Scholar] [CrossRef]
- Avinash, B.; Ravikumar, C.R.; Kumar, M.R.A.; Santosh, M.S.; Pratapkumar, C.; Nagaswarupa, H.P.; Murthy, H.C.A.; Deshmukh, V.V.; Bhatt, A.S.; Jahagirdar, A.A.; et al. NiO bio-composite materials: Photocatalytic, electrochemical and supercapacitor applications. Appl. Surf. Sci. Adv. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Abel, S.; Jule, L.T.; Belay, F.; Shanmugam, R.; Dwarampudi, L.P.; Nagaprasad, N.; Krishnaraj, R. Application of Titanium Dioxide Nanoparticles Synthesized by Sol-Gel Methods in Wastewater Treatment. J. Nanomater. 2021, 2021, 3039761. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Baghapour, M.A.; Ranjbar, M.; Faramarzian, M. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies. Health Scope 2013, 2, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. Chemical oxidation of methylene blue using a Fenton-like re-action. J. Hazard. Mater. 2001, 84, 57–71. [Google Scholar] [CrossRef]
- Habib, N.R.; Taddesse, A.M.; Temesgen, A. Synthesis, characterization and photocatalytic activity of Mn2O3/Al2O3/Fe2O3 nanocomposite for degradation of malachite green. Bull. Chem. Soc. Ethiop. 2018, 32, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, T.; Fujishima, A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purifi-cation. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Wang, Y.F.; Tao, J.J.; Wang, X.Z.; Wang, Z.; Zhang, M.; Gang, H.; Sun, Z.Q. A unique Cu2O/TiO2 nanocomposite with enhanced photocatalytic performance under visible light irradiation. Ceram. Int. 2017, 43, 4866–4872. [Google Scholar] [CrossRef]
- Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219. [Google Scholar] [CrossRef]
- Pan, C.; Zhu, Y. New Type of BiPO4 Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye. Environ. Sci. Technol. 2010, 44, 5570–5574. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Selective transport of electron and hole among {0 0 1} and {1 1 0} facets of BiOCl for pure water splitting. Appl. Catal. B Environ. 2015, 162, 470–474. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, J.; Rawat, M. An efficient and blistering reduction of 4-nitrophenol by green synthesized silver nanoparticles. SN Appl. Sci. 2019, 1, 1060. [Google Scholar] [CrossRef] [Green Version]
- Verdine, J.C. Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. ChemSusChem 2019, 12, 577–588. [Google Scholar]
- Alam, M.W. Electrochemical Sensing of Dextrose and Photocatalytic Activities by Nickel Ferrite Nanoparticles Synthesized by Probe Sonication Method. Curr. Nanosci. 2021, 17. [Google Scholar] [CrossRef]
- Khan, M.S.; Ashiq, M.N.; Ehsan, M.F.; He, T.; Ijaz, S. Controlled synthesis of cobalt telluride superstructures for the visible light photo-conversion of carbon dioxide into methane. Appl. Catal. A Gen. 2014, 487, 202–209. [Google Scholar] [CrossRef]
- Alam, M.W.; Rao, T.N.; Prashanthi, Y.; Sridhar, V.; Alshoaibi, A.; Souayeh, B.; Abuhimd, H.; Ahmed, F. Application of Silica Nanoparticles in the Determination of Herbicides in Environmental Water Samples Using Liquid Chromatography-Mass Spectroscopy. Curr. Nanosci. 2020, 16, 748–756. [Google Scholar] [CrossRef]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis Fundamentals and Applications, A Revolution in Cleaning; BKC: Tokyo, Japan, 1999. [Google Scholar]
- Fujishima, A.; Honda, K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Muthee, D.K.; Dejene, B.F. Effect of annealing temperature on structural, optical and photocatalytic properties of titanium dioxide nanoparticles. Heliyon 2021, 7, e07269. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Dave, P.N.; Shah, N. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 2012, 16, 307–325. [Google Scholar] [CrossRef] [Green Version]
- Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prspects and applications in medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahshid, S.; Askari, M.; Ghamsari, M.S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium iso-propoxide solution. J. Mater. Process. Technol. 2007, 189, 296–300. [Google Scholar] [CrossRef]
- O’regan, B.; Gratzel, M. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Eidsvåg, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai, D. TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules 2021, 26, 1687. [Google Scholar] [CrossRef]
- Li, G.; Richter, C.P.; Milot, R.L.; Cai, L.; Schmuttenmaer, C.A.; Crabtree, R.H.; Brudvig, G.W.; Batista, V.S. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Trans. 2009, 10078–10085. [Google Scholar] [CrossRef]
- Ahn, W.-Y.; Sheeley, S.A.; Rajh, T.; Cropek, D.M. Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl. Catal. B Environ. 2007, 74, 103–110. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.; Leung, D.Y.C.; Sumathy, K. A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen pro-duction. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Kan, F.; Jiang, F. Synthesis and Characterization of TiO2 Nanoparticles. Asian J. Chem. 2014, 26, 655–659. [Google Scholar] [CrossRef]
- Dubey, R.S.; Krishnamurthy, K.V.; Singh, S. Experimental studies of TiO2 nanoparticles synthesized by sol-gel and sol-vothermal routes for DSSCs application. Results Phys. 2019, 14, 102390. [Google Scholar] [CrossRef]
- Devi, R.; Venckatesh, R.; Sivaraj, R. Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15206–15211. [Google Scholar] [CrossRef]
- Chu, L.; Qin, Z.; Yang, J.; Li, X. Anatase TiO2 nanoparticles with exposed (001) facets for efficient dye-sensitized solar cells. Sci. Rep. 2015, 5, 12143–12152. [Google Scholar] [CrossRef]
- Jule, L.T.; Ramaswamy, K.; Bekele, B.; Saka, A.; Nagaprasad, N. Experimental investigation on the impacts of annealing temperatures on titanium dioxide nanoparticles structure, size and optical properties synthesized through sol-gel methods. Mater. Today Proc. 2021, 45, 5752–5758. [Google Scholar] [CrossRef]
- Babji, P.; Rao, I.N. Catalytic reduction of 4-nitrophenol by using Fe3+ and Ag+ Co-doped TiO2 nanoparticles. Int. J. Sci. Res. 2015, 4, 2636–2641. [Google Scholar]
- Vijayalaxmi, R.; Rajendran, V. Synthesis and characterization of nano TiO2 via different methods. Arch. Appl. Sci. Res. 2012, 4, 1183–1190. [Google Scholar]
- Soler-Illia, G.; Louis, A.; Sanchez, C. Synthesis and characterization of mesostructured titania-based materials through evap-oration induced self assembly. Chem. Mater. 2002, 14, 750–759. [Google Scholar] [CrossRef]
- Yu, J.C.; Zhang, L.; Zheng, A.Z.; Zhao, J. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chem. Mater. 2003, 15, 2280–2286. [Google Scholar] [CrossRef]
- Kim, S.; Gupta, N.K.; Bae, J.; Kim, K.S. Fabrication of Coral–like Mn2O3/Fe2O3 nanocomposite for room temperature removal of hydrogen sulfide. J. Environ. Chem. Eng. 2021, 9, 105216. [Google Scholar] [CrossRef]
- Bagheri, S.; Shameli, K.; Hamid, S.B.A. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J. Chem. 2013, 2013, 848205. [Google Scholar] [CrossRef]
- Jafri, N.M.; Jaafar, J.; Alias, N.; Samitsu, S.; Aziz, F.; Salleh, W.W.; Yusop, M.M.; Othman, M.; Rahman, M.; Ismail, A.; et al. Synthesis and Characterization of Titanium Dioxide Hollow Nanofiber for Photocatalytic Degradation of Methylene Blue Dye. Membranes 2021, 11, 581. [Google Scholar] [CrossRef]
- Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. 2016, 23, 25485–25493. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Mondal, A. Photodegradation of methylene blue under direct sunbeams by synthesized anatase titania nanopar-ticles. SN Appl. Sci. 2019, 1, 280. [Google Scholar] [CrossRef] [Green Version]
- Muthee, D.; Dejene, B. The effect of tetra isopropyl orthotitanate (TIP) concentration on structural, and luminescence properties of titanium dioxide nanoparticles prepared by sol-gel method. Mater. Sci. Semicond. Process. 2019, 106, 104783. [Google Scholar] [CrossRef]
- Gupta, N.K.; Ghaffari, Y.; Bae, J.; Kim, K.S. Synthesis of coral-like α-Fe2O3 nanoparticles for dye degradation at neutral pH. J. Mol. Liq. 2020, 301, 112473. [Google Scholar] [CrossRef]
- Ghaffari, Y.; Gupta, N.K.; Bae, J.; Kim, K.S. One-step fabrication of Fe2O3/Mn2O3 nanocomposite for rapid photodegradation of organic dyes at neutral pH. J. Mol. Liq. 2020, 315, 113691. [Google Scholar] [CrossRef]
- Gupta, N.K.; Ghaffari, Y.; Kim, S.; Bae, J.; Kim, K.S.; Saifuddin, M. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep. 2020, 10, 4942. [Google Scholar] [CrossRef]
- Dagher, S.; Soliman, A.; Ziout, A.; Tit, N.; Hilal–Alnaqbi, A.; Khashan, S.A.; Alnaimat, F.; Qudeiri, J.E.A. Photocatalytic removal of methylene blue using titania–and silica-coated magnetic nanoparticles. Mater. Res. Express 2018, 5, 065518. [Google Scholar] [CrossRef] [Green Version]
- Sarigul, G.; Chamorro-Mena, I.; Linares, N.; Garcia-Martinez, J.; Serrano, E. Hybrid amino acid–TiO2 materials with tuneable crystalline structure and morphology for photocatalytic applications. Adv. Sustain. Syst. 2021, 5, 2100076. [Google Scholar] [CrossRef]
- Devi, S.M.; Nivetha, A.; Prabha, I. Role of citric acid/glycine-reinforced nanometal oxide for the enhancement of physio-chemical specifications in catalytic properties. J. Supercond. Nov. Magn. 2020, 33, 3893–3901. [Google Scholar] [CrossRef]
- Sanchez, U.A.; Chen, L.; Wang, J.A.; Norena, L.E.; Azomoza, M.; Solis, S.; Zhou, X.; Song, Y.; Liu, J. One-pot synthesis of W-TiO2/SiO2 catalysts for the photodegradation of p-Nitrophenol. Int. J. Photoenergy 2019, 2019, 13. [Google Scholar] [CrossRef] [Green Version]
S. No | Catalyst | Pollutant | Reduction % | Reference |
---|---|---|---|---|
1 | α-Fe2O3 | MB | 95% | 49 |
Methyl orange | 94% | |||
Bromo green | 94% | |||
Methyl red | 76% | |||
2 | Fe2O3/Mn2O3 | MB | ||
3 | NiFe2O4 | MB | 89% | 51 |
Methyl orange | 92% | |||
Bromo green | 93% | |||
Methyl red | 78% | |||
4 | Fe3O4/TiO2 | MB | 97% | 52 |
5 | TiO2 | MB 50 mg catalyst 75 mg catalyst 100 mg catalyst 4-nitrophenol 0.5 mg catalyst | 60.08% 68.38% 80.89% 98.44% | Present work |
S. No | Time (min) | Absorbance | % Reduction | ln (c0/ct) |
---|---|---|---|---|
1 | 0 | 2.7234 | 0 | 0 |
2 | 1 | 2.1887 | 19.63 | 0.0949 |
3 | 2 | 1.4367 | 47.24 | 0.2776 |
4 | 3 | 1.0410 | 61.77 | 0.4176 |
5 | 4 | 0.8030 | 70.51 | 0.5304 |
6 | 5 | 0.5890 | 78.77 | 0.6650 |
7 | 6 | 0.3753 | 86.21 | 0.8607 |
8 | 7 | 0.2143 | 92.13 | 1.1041 |
9 | 8 | 0.1082 | 96.02 | 1.4009 |
10 | 9 | 0.0423 | 98.44 | 1.8124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.M.; Mushtaq, S.; Al Qahtani, H.S.; Sedky, A.; Alam, M.W. Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals 2021, 11, 1456. https://doi.org/10.3390/cryst11121456
Ahmad MM, Mushtaq S, Al Qahtani HS, Sedky A, Alam MW. Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals. 2021; 11(12):1456. https://doi.org/10.3390/cryst11121456
Chicago/Turabian StyleAhmad, Mohamad M., Shehla Mushtaq, Hassan S. Al Qahtani, A. Sedky, and Mir Waqas Alam. 2021. "Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction" Crystals 11, no. 12: 1456. https://doi.org/10.3390/cryst11121456
APA StyleAhmad, M. M., Mushtaq, S., Al Qahtani, H. S., Sedky, A., & Alam, M. W. (2021). Investigation of TiO2 Nanoparticles Synthesized by Sol-Gel Method for Effectual Photodegradation, Oxidation and Reduction Reaction. Crystals, 11(12), 1456. https://doi.org/10.3390/cryst11121456