Study on Lamb Waves in a Composite Phononic Crystal Plate
Abstract
1. Introduction
2. Formulation of the Problem
3. Numerical Results
3.1. Influence of Geometric Parameters on Band Gaps
3.2. Influence of Magnetic Field on Band Gaps
3.3. Influence of Period Number n and Magnetic Field Intensity H on Attenuation Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Y.-J.; Yu, Y.-J.; Zuo, Y.-Y.; Qiu, L.-L.; Dong, M.-M.; Ye, J.-T.; Yang, J. Band gap and experimental study in phononic crystals with super-cell structure. Results Phys. 2019, 13, 102200. [Google Scholar] [CrossRef]
- Lu, K.; Zhou, G.-J.; Gao, N.-S.; Li, L.-Z.; Lei, H.-X.; Yu, M.-R. Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators. Appl. Acoust. 2020, 159, 107115. [Google Scholar] [CrossRef]
- Kushwaha, M.-S.; Halevi, P.; Dobrzynsi, L. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Zhang, X.; Mao, Y. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yang, X.-W.; Geng, Q.; Li, Z.; Li, Y.-M.; Wang, X.; Zhang, H. Anisotropic phononic crystal structure with low-frequency bandgap and heat flux manipulation. Sci. China Phys. Mech. Astron. 2020, 63, 224711. [Google Scholar] [CrossRef]
- Graczykowski, B.; EI Sachat, A.; Reparaz, J.-S.; Sledzinska, M.; Wagner, M.-R.; Chavez-Angel, E.; Wu, Y.; Volz, S.; Wu, Y.; Alzina, F.; et al. Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures. Nat. Commun. 2017, 8, 415. [Google Scholar] [CrossRef]
- An, X.-Y.; Fan, H.-L.; Zhang, C.-Z. Elastic wave and vibration bandgaps in two-dimensional acoustic metamaterials with resonators and disorders. Wave Motion 2018, 80, 69–81. [Google Scholar] [CrossRef]
- Oudich, M.; Yong, L.; Assouar, B.-M. A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 2010, 12, 1–10. [Google Scholar] [CrossRef]
- Sukhovich, A.; Merheb, B.; Muralidharan, K.; Vasseur, J.-O.; Pennec, Y.; Deymier, P.-A.; Page, J.-H. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 2019, 102, 154301. [Google Scholar] [CrossRef]
- Hou, Z.-L.; Assouar, B.-M. Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method. Phys. Lett. A 2008, 372, 2091–2097. [Google Scholar] [CrossRef]
- Graczykowski, B.; Vogel, N.; Bley, K.; Butt, H.-J.; Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: Adhesion, resonances, and periodicity. Nano Lett. 2020, 20, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-W.; Wu, F.-G.; Zhang, X.; Hou, Z.-L. Lamb wave band gaps in locally resonant phononic crystal strip waveguides. Phys. Lett. A 2012, 376, 579–583. [Google Scholar] [CrossRef]
- Hedayatrasa, S.; Abhary, K.; Uddin, M. Numerical study and topology optimization of 1D periodic biomaterial phononic crystal plates for bandgaps of low order Lamb waves. Ultrasonics 2015, 57, 104–124. [Google Scholar] [CrossRef]
- Chen, J.-J.; Han, X. The propagation of Lamb waves in one-dimensional phononic crystal plates bordered with symmetric uniform layers. Phys. Lett. A 2010, 374, 3243–3246. [Google Scholar] [CrossRef]
- Chen, J.-J.; Xia, Y.-J.; Han, X.; Zhang, H.-B. Lamb waves in phononic crystal slabs: Truncated plane parallels to the axis of periodicity. Ultrasonics 2012, 52, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-B.; Chen, J.-J.; Han, X. Lamb wave band gaps in a homogenous plate with periodic tapered surface. J. Appl. Phys. 2012, 112, 054503. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Yuan, Y.; Zou, X.-Y.; Cheng, J.-C. Piezoelectric-sensitive mode of lamb wave in one-dimensional piezoelectric phononic crystal plate. Wave Motion 2015, 54, 66–75. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wang, T.-T.; Liu, J.-P.; Wang, Y.-S.; Laude, V. Guiding and splitting Lamb waves in coupled-resonator elastic waveguides. Compos. Struct. 2018, 206, 588–593. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Wu, B.; Su, Y.-P.; Liu, D.-Y.; Chen, W.-Q.; Bao, R.-H. Tunable flexural wave band gaps in a prestressed elastic beam with periodic smart resonators. Mech. Adv. Mater. Struct. 2019, 1–8. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.-Y.; Wu, B.; Chen, W.-Q.; Balogun, O. Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. Int. J. Mech. Sci. 2018, 146, 81–90. [Google Scholar] [CrossRef]
- Gao, N.-S.; Hou, H.; Mu, Y.-H. Low frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator. Theor. Appl. Mech. Lett. 2017, 7, 252–257. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Elbanna, A. Tension-induced tunable corrugation in two-phase soft composites: Mechanisms and implications. Extreme Mech. Lett. 2015, 4, 26–37. [Google Scholar] [CrossRef]
- Farshad, M.; Benine, A. Magnetoactive elastomer composites. Polym. Test. 2004, 23, 347–353. [Google Scholar] [CrossRef]
- Elhajjar, R.; Law, C.-T.; Pegoretti, A. Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Progr. Mater. Sci. 2018, 97, 204–229. [Google Scholar] [CrossRef]
- Perales-Martínez, I.-A.; Palacios-Pineda, L.-M.; Lozano-Sánchez, L.-M. Enhancement of a magnetorheological PDMS elastomer with carbonyl iron particles. Polym. Test. 2017, 57, 78–86. [Google Scholar] [CrossRef]
- Winger, J.; Schümann, M.; Kupka, A.; Odenbach, S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J. Magn. Magn. Mater. 2019, 481, 176–182. [Google Scholar] [CrossRef]
- Sun, S.-S.; Yang, J.; Yildirim, T.-J.; Ning, D.-H.; Zhu, X.-J.; Du, H.-P.; Zhang, S.-W.; Nakano, M.; Li, W.-H. A magnetorheological elastomer rail damper for wideband attenuation of rail noise and vibration. J. Intell. Mater. Syst. Struct. 2020, 31, 220–228. [Google Scholar] [CrossRef]
- Mikhailov, V.-P.; Bazinenkov, A.-M. Active vibration isolation platform on base of magnetorheological elastomers. J. Magn. Magn. Mater. 2017, 431, 266–268. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Wu, F.-G.; Guo, Z.-N. Shear-wave band gaps tuned in two-dimensional phononic crystals with magnetorheological material. Solid State Commun. 2013, 154, 43–45. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Tong, J.; Wu, F.-G. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial. Solid State Commun. 2018, 271, 51–55. [Google Scholar] [CrossRef]
- Wen, X.-X.; Yu, G.-J.; Wang, L.-Y.; Zhu, S.-J. Band Gap Vibration Isolation of Phononic Crystals Based on Magnetorheological Elastomers. J. Synth. Cryst. 2018, 47, 102–108. [Google Scholar]
- Liu, S.-G.; Zhao, Y.-C.; Zhao, D. Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer. Acta Phys. Sin. 2019, 68, 234301. [Google Scholar]
- Bellan, C.; Bossis, G. Field dependence of viscoelastic properties of mr elastomers. Int. J. Mod. Phys. B 2002, 16, 2447–2453. [Google Scholar] [CrossRef]
- Davis, L.-C. Model of magnetorheological elastomers. J. Appl. Phys. 1999, 85, 3348–3351. [Google Scholar] [CrossRef]
- Jolly, M.-R.; Carlson, J.-D.; Munoz, B.-C. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 1996, 7, 613–622. [Google Scholar] [CrossRef]
- Wang, G.; Wen, J.-h.; Liu, Y.-Z.; Yu, D.-L.; Zhao, H.-G. Research on the vibration band gaps of one dimensional viscoelastic periodic structure. Chin. J. Mech. Eng. 2004, 40, 47–50. [Google Scholar] [CrossRef]
Material | |||
---|---|---|---|
Concrete | 30 | 0.2 | 2500 |
Steel | 210.6 | 0.3 | 7780 |
Rubber | 0.47 | 1300 |
a/mm 300 | a1/mm 90 | a2/mm 150 | a3/mm 60 |
---|---|---|---|
h1/mm | h2/mm | h3/mm | |
75 | 50 | 75 | 27% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Zhao, P.; Ding, Y.; Ding, B.; Du, J.; Ma, T.; Wang, J. Study on Lamb Waves in a Composite Phononic Crystal Plate. Crystals 2020, 10, 799. https://doi.org/10.3390/cryst10090799
Yuan L, Zhao P, Ding Y, Ding B, Du J, Ma T, Wang J. Study on Lamb Waves in a Composite Phononic Crystal Plate. Crystals. 2020; 10(9):799. https://doi.org/10.3390/cryst10090799
Chicago/Turabian StyleYuan, Lili, Peng Zhao, Yong Ding, Benjie Ding, Jianke Du, Tingfeng Ma, and Ji Wang. 2020. "Study on Lamb Waves in a Composite Phononic Crystal Plate" Crystals 10, no. 9: 799. https://doi.org/10.3390/cryst10090799
APA StyleYuan, L., Zhao, P., Ding, Y., Ding, B., Du, J., Ma, T., & Wang, J. (2020). Study on Lamb Waves in a Composite Phononic Crystal Plate. Crystals, 10(9), 799. https://doi.org/10.3390/cryst10090799