Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Materials Characterization
2.3. GCE Preparation
3. Results and Discussion
3.1. XRD Analysis
3.2. Morphological Analysis
3.3. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, D.; Zhang, H.; Yu, X.; Zhang, M.; Zhang, P.; Li, Q.; Wang, T. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254. [Google Scholar] [CrossRef]
- Hou, L.; Hua, H.; Liu, S.; Pang, G.; Yuan, C. Surfactant-assisted hydrothermal synthesis of ultrafine CoMoO4·0.9H2O nanorods towards high-performance supercapacitors. New J. Chem. 2015, 39, 5507–5512. [Google Scholar] [CrossRef]
- Kazemi, S.H.; Tabibpour, M.; Kiani, M.A.; Kazemi, H. An advanced asymmetric supercapacitor based on a binder-free electrode fabricated from ultrathin CoMoO4 nano-dandelions. RSC Adv. 2016, 6, 71156–71164. [Google Scholar] [CrossRef]
- Xu, K.; Chao, J.; Li, W.; Liu, Q.; Wang, Z.; Liu, X.; Zou, R.; Hu, J. CoMoO4·0.9H2O nanorods grown on reduced graphene oxide as advanced electrochemical pseudocapacitor materials. RSC Adv. 2014, 4, 34307–34314. [Google Scholar] [CrossRef]
- Candler, J.; Elmore, T.; Gupta, B.K.; Dong, L.; Palchoudhury, S.; Gupta, R.K. New insight into higherature driven morphology reliant CoMoO4 flexible supercapacitors. New J. Chem. 2015, 39, 6108–6116. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.; Ghosh, D.; Giri, S.; Shakir, I.; Das, C.K. Polyaniline-wrapped 1D CoMoO4·0.75H2O nanorods as electrode materials for supercapacitor energy storage applications. RSC Adv. 2014, 4, 30832–30839. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Krishnamoorthy, K.; Radhakrishnan, S.; Kim, N.J.; Kim, S.J. Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. Int. J. Hydrogen Energy 2014, 39, 5186–5193. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, H.; Zhang, M.; Li, L.; Wang, Z. Facile synthesis of ZnCo2O4micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J. Alloys Compd. 2017, 702, 381–387. [Google Scholar] [CrossRef]
- Wu, X.; Meng, L.; Wang, Q.; Zhang, W.; Wang, Y. Highly flexible and large areal/volumetric capacitances for asymmetric supercapacitor based on ZnCo2O4 nanorods arrays and polypyrrole on carbon cloth as binder-free electrodes. Mater. Lett. 2019, 234, 1–4. [Google Scholar] [CrossRef]
- Ray, A.; Roy, A.; Saha, S.; Das, S. Transition Metal Oxide-Based Nano-materials for Energy Storage Application. Sci. Technol. Adv. Appl. Supercapacitors 2019, 1–17, IntechOpen. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Guo, D.; Hu, L.; Zhang, G.; Fu, T.; Ren, W.; Li, J.; Li, Q. Facile synthesis of ZnCo2O4nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 16116–16123. [Google Scholar] [CrossRef]
- Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalt. Trans. 2017, 46, 9201–9209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensafi, A.A.; Moosavifard, S.E.; Rezaei, B.; Kaverlavani, S.K. Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 10497–10506. [Google Scholar] [CrossRef]
- Raut, S.S.; Sankapal, B.R. First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device. Electrochim. Acta 2016, 198, 203–211. [Google Scholar] [CrossRef]
- Ji, Y.; Xie, J.; Wu, J.; Yang, Y.; Fu, X.Z.; Sun, R.; Wong, C.P. Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors. J. Power Sources 2018, 393, 54–61. [Google Scholar] [CrossRef]
- Jinlong, L.; Tongxiang, L. The effects of urea concentration on microstructures of ZnCo2O4 and its supercapacitor performance. Ceram. Int. 2017, 43, 6168–6174. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C.; Zhang, Q.; Zhang, J.; Wang, X.; Lin, Z.; Wang, J.; Lv, W.; Lu, C.; Wong, C.; et al. An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J. Mater. Chem. A 2017, 5, 6928–6936. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, Y.; Qiu, K.; Yan, H.; Hou, X.; Xu, J.; Han, L.; Liu, X.; Kim, J.K.; Luo, Y. Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 17016–17022. [Google Scholar] [CrossRef]
- Gai, Y.; Shang, Y.; Gong, L.; Su, L.; Hao, L.; Dong, F. A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 2016, 7, 1038–1044. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.; Wang, X.; Zhao, X.; Wang, Y.; Ji, Y.; Zhang, H.; Liu, X. Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv. 2014, 4, 2393–2397. [Google Scholar] [CrossRef]
- Wang, S.; Pu, J.; Tong, Y.; Cheng, Y.; Gao, Y.; Wang, Z. ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J. Mater. Chem. A 2014, 2, 5434–5440. [Google Scholar] [CrossRef]
- Luo, W.; Hu, X.; Sun, Y.; Huang, Y. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 8916–8921. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Jiao, Y.T.; Li, Z.; Gao, Y. Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitors. Electrochim. Acta 2019, 299, 388–394. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Simon, P. 08nature mater-Materials for electrochemical capacitors.PDF. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.K.; Yu, J.S. HMTA-assisted uniform cobalt ions activated copper oxide microspheres with enhanced electrochemical performance for pseudocapacitors. Electrochim. Acta 2017, 258, 388–395. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Lian, J.; Xu, Y.; Bao, J.; Qiu, J.; Xu, L.; Xu, H.; Hua, M.; Li, H. Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 2017, 123, 296–304. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Wu, L.; Fu, Q.; Gao, H. Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor. J. Alloys Compd. 2019, 773, 367–375. [Google Scholar] [CrossRef]
- Lahure, P.; Salunke, P.; Soliwal, R.; Yadav, A.; Tripathi, S.; Koser, A.A. X-Ray Diffraction Study of ZnO Nanoparticles. IJSRPAS 2015, 3, 32–33. [Google Scholar]
- Priya, M.; Premkumar, V.K.; Vasantharani, P.; Sivakumar, G. Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method. Vacuum 2019, 167, 307–312. [Google Scholar] [CrossRef]
- Hossen, M.M.; Hossen, M.B. Structural, electrical and magnetic properties of Ni0.5Cu0.2Cd0.3LaxFe2-xO4 nano-ferrites due to lanthanum doping in the place of trivalent iron. Phys. B Condens. Matter 2020, 585, 412116. [Google Scholar] [CrossRef]
- Kianpour, G.; Salavati-Niasari, M.; Emadi, H. Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattices Microstruct. 2013, 58, 120–129. [Google Scholar] [CrossRef]
- Liu, M.C.; Kong, L.B.; Kang, L.; Li, X.; Walsh, F.C.; Xing, M.; Lu, C.; Ma, X.J.; Luo, Y.C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: A new family of high performance pseudocapacitive materials. J. Mater. Chem. A 2014, 2, 4919–4926. [Google Scholar] [CrossRef] [Green Version]
- Chuo, H.X.; Gao, H.; Yang, Q.; Zhang, N.; Bu, W.B.; Zhang, X.T. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. J. Mater. Chem. A 2014, 2, 20462–20469. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Sun, J.; Zhang, Y.; Xu, C.; Chen, H. Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances. J. Alloys Compd. 2020, 821, 153507-1–153507-10. [Google Scholar] [CrossRef]
- Rajesh, J.A.; Min, B.K.; Kim, J.H.; Kang, S.H.; Kim, H.; Ahn, K.S. Facile hydrothermal synthesis and electrochemical supercapacitor performance of hierarchical coral-like ZnCo2O4 nanowires. J. Electroanal. Chem. 2017, 785, 48–57. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Jadhav, H.S.; Kim, H. PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem. Eng. J. 2017, 308, 202–213. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Wang, X.; Zhang, J.; Sun, L.; Gao, C.; Shang, J.; Hu, Y.; Zhu, Q. Electrochemical properties of NiCoO2 synthesized by hydrothermal method. RSC Adv. 2017, 7, 50753–50759. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Liao, F.; Zhang, Y.; Han, X.; Xu, C.; Chen, H. Solvothermal preparation of zinc cobaltite mesoporous microspheres for high-performance electrochemical supercapacitors. J. Alloys Compd. 2019, 781, 425–432. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Y.Q.; Xia, X.H.; Shi, S.J.; Lu, Y.; Wang, X.L.; Gu, C.D.; Tu, J.P. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J. Power Sources 2013, 239, 157–163. [Google Scholar] [CrossRef]
- Chang, X.; Zang, L.; Liu, S.; Wang, M.; Guo, H.; Wang, C.; Wang, Y. In situ construction of yolk-shell zinc cobaltite with uniform carbon doping for high performance asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 9109–9115. [Google Scholar] [CrossRef]
- Shang, Y.; Xie, T.; Gai, Y.; Su, L.; Gong, L.; Lv, H. Electrochimica Acta Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors. Electrochim. Acta 2017, 253, 281–290. [Google Scholar] [CrossRef]
- Liu, M.C.; Kong, L.B.; Lu, C.; Li, X.M.; Luo, Y.C.; Kang, L. Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 2013, 94, 197–200. [Google Scholar] [CrossRef]
- Su, L.; Gao, L.; Du, Q.; Hou, L.; Ma, Z.; Qin, X.; Shao, G. Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J. Alloys Compd. 2018, 749, 900–908. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, H.; Zhang, M.; Li, L.; Wang, G.; Shan, X. Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)2 for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 2017, 497, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Zhu, J.; Li, J.; Pu, T.; Huang, B.; Zhao, C.; Xie, L.; Chen, L. Free-standing Two-dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor. Electrochim. Acta 2017, 257, 455–464. [Google Scholar] [CrossRef]
- Lu, J.; Ran, H.; Li, J.; Wan, J.; Wang, C.; Ji, P.; Wang, X.; Liu, G.; Hu, C. A fast composite-hydroxide-mediated approach for synthesis of 2D-LiCoO2 for high performance asymmetric supercapacitor. Electrochim. Acta 2020, 331, 135426-1–135426-7. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Yan, Y.; Guo, Q.; Xie, L.; Yang, Z.; He, J.; Qi, W.; Cao, Z.; Zhao, X.; et al. Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application. J. Power Sources 2020, 450. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Yang, C.; Hu, W. Sol-gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceram. Int. 2016, 42, 11411–11416. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wu, J.; Shu, X.; Yu, C.; Cui, J.; Qin, Y.; Zhang, Y.; Ajayan, P.M.; Wu, Y. Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies. Chem. Eng. J. 2017, 313, 1071–1081. [Google Scholar] [CrossRef]
- Soram, B.S.; Dai, J.; Kshetri, T.; Kim, N.H.; Lee, J.H. Vertically grown and intertwined Co(OH)2 nanosheet@Ni-mesh network for transparent flexible supercapacitor. Chem. Eng. J. 2019, 391, 123540-1–123540-12. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Z.; Ma, J.; Wang, J.; Wang, B.; Liu, L. Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors. Electrochim. Acta 2013, 112, 378–385. [Google Scholar] [CrossRef]
- Jinlong, L.; Meng, Y.; Suzuki, K.; Miura, H. Synthesis of CoMoO4@RGO nanocomposites as high-performance supercapacitor electrodes. Microporous Mesoporous Mater. 2017, 242, 264–270. [Google Scholar] [CrossRef]
h k l | 2θ (°) | d-Spacing (Å) | JCPDS No. | Composition | ||
---|---|---|---|---|---|---|
Standard Value | Observed Value | Standard Value | Observed Value | |||
220 | 31.21 | 31.28 | 2.86 | 2.85 | 23–1390 | ZnCo2O4 |
311 | 36.80 | 36.85 | 2.44 | 2.41 | ||
222 | 38.48 | 38.51 | 2.42 | 2.33 | ||
422 | 55.57 | 55.74 | 1.62 | 1.64 | ||
511 | 59.28 | 59.34 | 1.55 | 1.56 | ||
440 | 65.14 | 65.32 | 1.42 | 1.43 |
Physical Quantity (Symbol) (Units) | Value |
---|---|
Lattice parameter (a) (Å) | 8.35 |
Micro strain (ε) × 10−3 | 1.53 |
Dislocation density (δ) × 10−15 | 1.96 |
Cell volume (v) (≈nm3) | 0.5823 |
Crystalline size (D) (nm) | 22.6 |
Current Density (µAcm−2) | 10 | 25 | 50 | 75 | 100 | 250 | 500 | 750 | 1000 |
Areal Capacitance (mFcm−2) | 16.13 | 12.78 | 10.20 | 9.09 | 8.35 | 6.07 | 4.46 | 3.73 | 3.21 |
Different Metal Oxides and Combinations | Synthesis Method | Areal Capacitance | Reference |
---|---|---|---|
NiCo2O4/MnO2 | Hydrothermal | 5.3 F cm−2 @ 1 mA cm−2 | [44] |
ZnCo2O4/Ni(OH)2 | Electrochemical deposition | 4.6 F cm−2 @ 2 mA cm−2 | [45] |
ZnCo2O4 | Hydrothermal | 2.72 F cm−2 @ 2.02 mA cm−2 | [46] |
2D-LiCoO2 | Electrochemical deposition | 310 mF cm−2 @ 5 mV s−1 | [47] |
MnO2/MoS2 | Magnetron sputtering | 224 mF cm−2 @ 0.1 mA cm−2 | [48] |
NiCo2O4 | Sol-gel method | 40.6 mF cm−2 @ 0.133 mA cm−2 | [49] |
TiO2 | Electrochemical anodization | 23.24 mF cm−2 @ 2 mV s−1 | [50] |
Co(OH)2/Ni | Electrochemical deposition | 22.9 mF cm−2 @ 5 mV s−1 | [51] |
sheet-like ZnCo2O4 | Hydrothermal | 16.13 mF cm−2 @ 10 μA cm−2 | present |
Resistance | Before Cycling | After Cycling |
---|---|---|
(Ω) | 242.2 | 30.11 |
(Ω) | 1160 | 110 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, K.; Rajasekhara Reddy, G.; Rajesh, M.; Babu, P.R.; Shanmugam, G.; Sushma, N.J.; Pratap Reddy, M.S.; Deva Prasad Raju, B.; Mallikarjuna, K. Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals 2020, 10, 566. https://doi.org/10.3390/cryst10070566
Prasad K, Rajasekhara Reddy G, Rajesh M, Babu PR, Shanmugam G, Sushma NJ, Pratap Reddy MS, Deva Prasad Raju B, Mallikarjuna K. Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals. 2020; 10(7):566. https://doi.org/10.3390/cryst10070566
Chicago/Turabian StylePrasad, Kumcham, Gutturu Rajasekhara Reddy, Megala Rajesh, P. Reddi Babu, Gnanendra Shanmugam, N. John Sushma, M. Siva Pratap Reddy, Borelli Deva Prasad Raju, and Koduru Mallikarjuna. 2020. "Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications" Crystals 10, no. 7: 566. https://doi.org/10.3390/cryst10070566
APA StylePrasad, K., Rajasekhara Reddy, G., Rajesh, M., Babu, P. R., Shanmugam, G., Sushma, N. J., Pratap Reddy, M. S., Deva Prasad Raju, B., & Mallikarjuna, K. (2020). Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals, 10(7), 566. https://doi.org/10.3390/cryst10070566