Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shen, D.; Park, J.-H.; Ajitsaria, J.; Choe, S.-Y.; Wikle, H.C.; Kim, D.-J. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. Microeng. 2008, 18, 055017. [Google Scholar] [CrossRef]
- Siang, J.; Lim, M.H.; Leong, M.S. Review of vibration-based energy harvesting technology: Mechanism and architectural approach. Int. J. Energy Res. 2018, 42, 1866–1893. [Google Scholar] [CrossRef]
- Kim, S.-G.; Priya, S.; Kanno, I. Piezoelectric MEMS for energy harvesting. MRS Bull. 2012, 37, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Priya, S. Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE T. Ultrason. Ferr. 2010, 57, 2610–2612. [Google Scholar] [CrossRef]
- Islam, R.A.; Priya, S. Realization of high-energy density polycrystalline piezoelectric ceramics. Appl. Phys. Lett. 2006, 88, 032903. [Google Scholar] [CrossRef]
- Seo, I.-T.; Cha, Y.-J.; Kang, I.-Y.; Choi, J.-H.; Nahm, S.; Seung, T.-H.; Paik, J.-H.; Priya, S. High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices. J. Am. Ceram. Soc. 2011, 94, 3629–3631. [Google Scholar] [CrossRef]
- Yan, Y.; Cho, K.-H.; Maurya, D.; Kumar, A.; Kalinin, S.; Khachaturyan, A.; Priya, S. Giant energy density in (001)-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 2013, 102, 042903. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Yang, Y.; Hu, Q.; Wang, Y.; Lupascu, D.C. Structures and Properties of Pb(Zr0.5Ti0.5)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 Ceramics for Energy Harvesting Devices. J. Am. Ceram. Soc. 2014, 97, 3999–4004. [Google Scholar] [CrossRef]
- Hur, J.; Kim, J.-H.; Lee, T.-G.; Seo, I.-T.; Kim, D.-H.; Nahm, S.; Kang, C.-Y. Structural and Piezoelectric Properties of (1-x)Pb(Zr1-yTiy)O3-xPb(Zn0.4Ni0.6)1/3Nb2/3O3 Ceramics Near Triple Point. J. Am. Ceram. Soc. 2015, 98, 2887–2893. [Google Scholar] [CrossRef]
- Zheng, M.-P.; Hou, Y.-D.; Ge, H.-Y.; Zhu, M.-K.; Yan, H. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN–0.8PZT ceramics. J. Eur. Ceram. Soc. 2013, 33, 1447–1456. [Google Scholar] [CrossRef]
- Yan, X.D.; Zheng, M.P.; Hou, Y.D.; Zhu, M.K. Composition-driven phase boundary and its energy harvesting performance of BCZT lead-free piezoelectric ceramic. J. Eur. Ceram. Soc. 2017, 37, 2583–2589. [Google Scholar] [CrossRef]
- Zheng, M.; Hou, Y.; Yan, X.; Zhu, M. The structural origin of enhanced energy harvesting performance in piezoelectric perovskite. J. Eur. Ceram. Soc. 2018, 38, 585–591. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Shrout, T.R.; Zhang, S.J. Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 2007, 19, 113–126. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, R.; Lebrun, L.; Anderson, D.; Shrout, T.R. Piezoelectric materials for high power, high temperature applications. Mater. Lett. 2005, 59, 3471–3475. [Google Scholar] [CrossRef]
- Li, F.; Xu, Z.; Wei, X.; Yao, X. Temperature- and dc bias field- dependent piezoelectric effect of soft and hard lead zirconate titanate ceramics. J. Electroceram. 2010, 24, 294–299. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Yan, X.D.; Zheng, M.P.; Gao, X.; Zhu, M.K.; Hou, Y.D. Giant current performance in lead-free piezoelectrics stem from local structural heterogeneity. Acta Mater. 2020, 187, 29–40. [Google Scholar] [CrossRef]
- Wang, D.; Cao, M.; Zhang, S.; Jones, J.L. Investigation of Ternary System PbHfO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 with Morphotropic Phase Boundary Compositions. J. Am. Ceram. Soc. 2012, 95, 3220–3228. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, M.F.; Zhang, S.J.; Feng, Y.J.; Li, F.; Shrout, T.R. Investigation of dielectric and piezoelectric properties in Pb(Ni1/3Nb2/3)O3–PbHfO3–PbTiO3 ternary system. J. Eur. Ceram. Soc. 2013, 33, 2491–2497. [Google Scholar] [CrossRef]
- Zheng, M.P.; Hou, Y.D.; Xie, F.Y.; Chen, J.; Zhu, M.K.; Yan, H. Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN-0.8PZT ceramics. Acta Mater. 2013, 61, 1489–1498. [Google Scholar] [CrossRef]
- Jin, L.; He, Z.; Damjanovic, D. Nanodomains in Fe3+-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Appl. Phys. Lett. 2009, 95, 012905. [Google Scholar]
- Kim, H.W.; Batra, A.; Priya, S.; Uchino, K.; Markley, D.; Newnham, R.E.; Hofmann, H.F. Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment. Jpn. J. Appl. Phys. 2004, 43, 6178–6183. [Google Scholar] [CrossRef]
- Yang, Z.; Zu, J. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energy Convers. Manage. 2016, 122, 321–329. [Google Scholar] [CrossRef]
- Richards, C.D.; Anderson, M.J.; Bahr, D.F.; Richards, R.F. Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 2004, 14, 717–721. [Google Scholar] [CrossRef]
- Kim, M.; Dugundji, J.; Wardle, B.L. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct. 2015, 24, 055006. [Google Scholar] [CrossRef]
- Crossley, S.; Kar-Narayan, S. Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology 2015, 26, 344001. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.C.; Lien, I.C. Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 2006, 16, 2429–2438. [Google Scholar] [CrossRef] [Green Version]
- Kubba, A.E.; Jiang, K. Efficiency enhancement of a cantilever-based vibration energy harvester. Sensors 2013, 14, 188–211. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zheng, M.; Hou, Y.; Zhu, M.; Yan, H. High energy conversion efficiency in Mn-modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead-free energy harvester. J. Am. Ceram. Soc. 2018, 101, 2330–2338. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zheng, M.; Zhu, M.; Hou, Y. Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting. Crystals 2020, 10, 907. https://doi.org/10.3390/cryst10100907
Yan X, Zheng M, Zhu M, Hou Y. Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting. Crystals. 2020; 10(10):907. https://doi.org/10.3390/cryst10100907
Chicago/Turabian StyleYan, Xiaodong, Mupeng Zheng, Mankang Zhu, and Yudong Hou. 2020. "Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting" Crystals 10, no. 10: 907. https://doi.org/10.3390/cryst10100907
APA StyleYan, X., Zheng, M., Zhu, M., & Hou, Y. (2020). Soft and Hard Piezoelectric Ceramics for Vibration Energy Harvesting. Crystals, 10(10), 907. https://doi.org/10.3390/cryst10100907