Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Composition on the Age Hardening Behavior
3.2. Effect of Composition on the Microstructures Evolution of H-0.4Mg and L-1.4Mg Alloys
3.3. SEM and XRD Analysis of H-0.4Mg and L-1.4Mg Alloys
3.4. Effect of Composition on the Tensile Properties
4. Conclusions
- Comparing the results of solution-treated and peak-aged states, the L-1.4Mg alloy had the highest hardness values, and the tendency remained the same during the entire ageing processes.
- The peak hardness value and age-hardening response were dependent on the Cu/Mg ratio which is aided by the modification in the Mg contents.
- In general, the increase in Mg content modifies the precipitate growth features. The L-1.4Mg comprises precipitate morphology in the duplex size (fine and coarse) precipitate distribution when compared to the H-0.4Mg alloy.
- A comparative study of microstructural analysis and XRD relative intensities manifests that the presence of solute consisting intermetallic precipitates—i.e., the Al2Cu (θ) phase, Al2CuMg (S) phases.
- Relative XRD profile data identified that the Al2CuMg (S) phase proceeds to form, to a large extent, in the low Cu/Mg ratio of alloy.
- Heterogeneous precipitate size distribution in the matrix and at grain boundaries provides a pathway for matrix and precipitation/grain-boundary strengthening in the L-1.4Mg alloy.
- Owing to the optimal combination of solid solution strengthening and precipitation strengthening the ultimate strength increased to 14%, and the strain hardening rate was almost doubled in the L-1.4Mg alloy when compared to H-0.4Mg alloy.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polmear, I.; Stjohn, D.; Nie, J.-F.; Qian, M. Light Alloys. Metallurgy of the Light Metals; Butterworth-Heinemann: Boston, MA, USA, 2017. [Google Scholar]
- Chen, Y.Z.; Liu, W.; Yuan, S.J. Strength and formability improvement of Al-Cu-Mn aluminum alloy complex parts by thermomechanical treatment with sheet hydroforming. JOM 2015. [Google Scholar] [CrossRef]
- Mishra, R.S.; Sidhar, H. Physical Metallurgy of 2XXX Aluminum Alloys. In Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Al-Obaisi, A.M.; El-Danaf, E.A.; Ragab, A.E.; Soliman, M.S. Precipitation Hardening and Statistical Modeling of the Aging Parameters and Alloy Compositions in Al-Cu-Mg-Ag Alloys. J. Mater. I Eng. Perform. 2016, 25, 2432–2444. [Google Scholar] [CrossRef]
- Muddle, B.C.; Polmear, I.J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys. Acta Metall. 1989. [Google Scholar] [CrossRef]
- Shuai, D.; Zeyu, B.; Wenbo, W.; Jiongming, T.; Ling, C.; Mingliang, W.; Cunjuan, X.; Haowei, W. The role of Sn element on the deformation mechanism and precipitation behavior of the Al–Cu–Mg alloy. Mater. Sci. Eng. A 2020. [Google Scholar] [CrossRef]
- Balducci, E.; Ceschini, L.; Messieri, S. High Temperature Tensile Tests of the Lightweight 2099 and 2055 Al-Cu-Li Alloy: A Comparison. JOM 2018, 70, 2716–2725. [Google Scholar] [CrossRef]
- Banerjee, S.; Robi, P.S.; Srinivasan, A. Prediction of hot deformation behavior of Al–5.9%Cu–0.5%Mg alloys with trace additions of Sn. J. Mater. Sci. 2012, 47. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Yang, J.; Deng, Y.; Xinming, Z. Influence of Mg contents on aging precipitation behavior of Al–3.5Cu–xMg alloy. Acta Metall Sin. 2014, 27. [Google Scholar] [CrossRef]
- Ouissi, T.; Collaveri, G.; Sciau, P.; Olivier, J.M.; Brunet, M. Comparison of aluminum alloys from aircraft of four nations involved in the WWII conflict using mutiscale analyses and archival study. Heritage 2019, 2, 172. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C.; Starink, M.J.; Gao, N. Overview of recent work on precipitation in Al-Cu-Mg alloys. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2007. [Google Scholar]
- Bai, S.; Liu, Z.; Gu, Y.; Zhou, X.; Zeng, S. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio. Mater. Sci. Eng. A 2011, 530, 473–480. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Two types of S phase precipitates in Al-Cu-Mg alloys. Acta Mater. 2007. [Google Scholar] [CrossRef] [Green Version]
- Starink, M.J.; Yan, J.L. Precipitation hardening in Al-Cu-Mg alloys: Analysis of precipitates, modelling of kinetics, strength predictions. In Proceedings of the Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2006. [Google Scholar]
- Brook, G.B. Precipitation in metals. In Special Rept. No. 3; Fulmer Research Institute: Stoke Poges, UK, 1963. [Google Scholar]
- Reich, L.; Murayama, M.; Hono, K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy-a three-dimensional atom probe study. Acta Mater. 1998. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Wang, S.; Wu, C.; Liu, J.Z.; Yang, S.S.; Wang, S.B.; Chen, J.H.; Wu, C.L. The influence of Cu/Mg atomic ratios on precipitation scenarios and mechanical properties of Al-Cu-Mg alloys. Artic. J. Alloy. Compd. 2014. [Google Scholar] [CrossRef]
- Ryen, Ø.; Nijs, O.; Sjölander, E.; Holmedal, B.; Ekström, H.E.; Nes, E. Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006. [Google Scholar] [CrossRef]
- García-Hernández, J.L.; Garay-Reyes, C.G.; Gómez-Barraza, I.K.; Ruiz-Esparza-Rodríguez, M.A.; Gutiérrez-Castañeda, E.J.; Estrada-Guel, I.; Maldonado-Orozco, M.C.; Martínez-Sánchez, R. Influence of plastic deformation and Cu/Mg ratio on the strengthening mechanisms and precipitation behavior of AA2024 aluminum alloys. J. Mater. Res. Technol. 2019, 8, 5471–5475. [Google Scholar] [CrossRef]
- Liu, Z.R.; Chen, J.H.; Wang, S.B.; Yuan, D.W.; Yin, M.J.; Wu, C.L. The structure and the properties of S-phase in AlCuMg alloys. Acta Mater. 2011. [Google Scholar] [CrossRef]
- Meyruey, G.; Massardier, V.; Lefebvre, W.; Perez, M. Over-ageing of an Al-Mg-Si alloy with silicon excess. Mater. Sci. Eng. A 2018. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 2005, 50, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Ringer, S.P.; Hono, K.; Polmear, I.J.; Sakurai, T. Precipitation processes during the early stages of ageing in Al-Cu-Mg alloys. Appl. Surf. Sci. 1996. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation hardening. MTA 1985, 16, 2131–2165. [Google Scholar] [CrossRef]
- Deschamps, A.; Bastow, T.J.; De Geuser, F.; Hill, A.J.; Hutchinson, C.R. In situ evaluation of the microstructure evolution during rapid hardening of an Al-2.5Cu-1.5Mg (wt.%) alloy. Acta Mater. 2011. [Google Scholar] [CrossRef]
- Bai, S.; Yi, X.; Liu, Z.; Wang, J.; Zhao, J.; Ying, P. The influence of preaging on the strength and precipitation behavior of a deformed Al-Cu-Mg-Ag alloy. J. Alloy. Compd. 2018, 764, 62–72. [Google Scholar] [CrossRef]
- Dalla Torre, F.; Lapovok, R.; Sandlin, J.; Thomson, P.F.; Davies, C.H.J.; Pereloma, E.V. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 2004. [Google Scholar] [CrossRef]
- Zolotorevsky, N.Y.; Solonin, A.N.; Churyumov, A.Y.; Zolotorevsky, V.S. Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys. Mater. Sci. Eng. A 2009. [Google Scholar] [CrossRef]
- Hosseini-Benhangi, P.; Mazinani, M.; Haddad-Sabzevar, M. Physically Based Model of the Yield Strength for an Al-Mg-Si-Cu-Zn Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015. [Google Scholar] [CrossRef]
- Wang, X.; Poole, W.J.; Esmaeili, S.; Lloyd, D.J.; Embury, J.D. Precipitation strengthening of the aluminum alloy AA6111. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2003. [Google Scholar] [CrossRef]
- Lukáč, P.; Trojanová, Z. Hardening and softening in selected magnesium alloys. Mater. Sci. Eng. A 2007. [Google Scholar] [CrossRef]
Alloys | Cu/Mg Ratio | Chemical Composition (wt.%) | |||
---|---|---|---|---|---|
Al | Cu | Mg | Ag | ||
H-0.4Mg | ~9.54 | 95.34 | 3.91 ± 0.158 | 0.41 ± 0.005 | 0.34 ± 0.008 |
L-1.4Mg | ~2.87 | 93.99 | 4.19 ± 0.046 | 1.46 ± 0.024 | 0.36 ± 0.003 |
Alloys | Yield Stress (MPa) | Tensile Stress (MPa) | % Elongation | Average Hardness (HV) | Average Grain Size (μm) | Average Precipitate Size (μm) |
---|---|---|---|---|---|---|
H-0.4Mg | 328 ± 12 | 386 ± 14 | 15 | 135 | 121 | 4 |
L-1.4Mg | 307 ± 34 | 439 ± 32 | 17 | 149 | 204 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, T.T.; Alharbi, H.F.; Soliman, M.S.; Ijaz, M.F. Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys. Crystals 2020, 10, 895. https://doi.org/10.3390/cryst10100895
Alshammari TT, Alharbi HF, Soliman MS, Ijaz MF. Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys. Crystals. 2020; 10(10):895. https://doi.org/10.3390/cryst10100895
Chicago/Turabian StyleAlshammari, Talal T., Hamad F. Alharbi, Mahmoud S. Soliman, and Muhammad F. Ijaz. 2020. "Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys" Crystals 10, no. 10: 895. https://doi.org/10.3390/cryst10100895
APA StyleAlshammari, T. T., Alharbi, H. F., Soliman, M. S., & Ijaz, M. F. (2020). Effects of Mg Content on the Microstructural and Mechanical Properties of Al-4Cu-xMg-0.3Ag Alloys. Crystals, 10(10), 895. https://doi.org/10.3390/cryst10100895