CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution
Abstract
1. Introduction
2. Result and Discussion
3. Experiment
3.1. Chemicals
3.2. Preparation of Catalysts
3.2.1. Preparation of CdS
3.2.2. Preparation of CoSe2
3.2.3. Preparation of CoSe2/CdS
3.3. Characterization
3.4. Photoelectrochemical Measurements
3.5. Photocatalytic Activity Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.; Wang, G.; Liu, Z.; Jin, Z. Strategy of nitrogen defects sponge from g-C3N4 nanosheets and Ni-Bi-Se complex modification for efficient dye—Sensitized photocatalytic H2 evolution. Mol. Catal. 2018, 453. [Google Scholar] [CrossRef]
- Hao, X.; Jin, Z.; Wang, D.; Xu, J.; Min, S.; Yuan, H.; Lu, G. Behavior of Borate Complex Anion on the Stabilities and the Hydrogen Evolutions of ZnxCo3-xO4 Decorated Graphene. Superlattices Microstruct. 2015, 82, 599–611. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor solution interfaces. J. Appl. Electrochem. 2007, 37, 765–787. [Google Scholar] [CrossRef]
- Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C 2011, 12, 237–268. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2015, 46, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 2013, 257, 1957–1969. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Paola, A.D.; García-López, E.; Marcì, G. A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 2012, 211, 3–29. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Habisreutinge, S.N.; Schmidtmende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yu, J.; Cao, S.; Cui, C.; Cheng, B. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl. Surf. Sci. 2015, 358, 350–355. [Google Scholar] [CrossRef]
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Fang, H.; Zheng, Y.Z.; Li, N.; Wang, Y.; Tao, X. Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl. Mater. Inter. 2016, 8, 13879–13889. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Liu, S. Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J. Phys. Chem. C. 2010, 114, 13642–13649. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Trans. 2010, 39, 5860–5867. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Jaroniec, M. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett. 2012, 12, 4584–4589. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, B.; Cheng, B. Noble-metal-free carbon nanotube Cd0.1Zn0.9S composites for high visible-light photocatalytic H2 production performance. Nanoscale 2012, 4, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, B.; Yu, J. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, Z.; Yuan, H.; Wang, G.; Ma, B. Well-regulated Nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 462, 213–225. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X. Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO2 nanosheets. J. Mater. Res. 2010, 25, 182–188. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/gC3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Qi, L.; Yu, J.M.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Chem. Chem. Phys. 2011, 13, 8915–8923. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y. Synthesis, microstructure, and photocatalysis of ZnO/CdS nano heterostructure. J. Phys. Chem. Solids 2011, 72, 1165–1169. [Google Scholar] [CrossRef]
- Xu, L.; Shi, W.; Guan, J. Preparation of crystallized mesoporous CdS/Ta2O5, composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catal. Commun. 2012, 25, 54–58. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, R. Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 2012, 117, 783–790. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, H.; Zheng, L. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Jin, Z.; Yang, H.; Lu, G.; Bi, Y. Peculiar Synergetic Effect of MoS2 Quantum Dots and Graphene on Metal-Organic Frameworks for Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2017, 210, 45–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Z.; Guan, S. Data on the synthesis processes optimization of novel β-NiS film modified CdS nanoflowers heterostructure nanocomposite for photocatalytic hydrogen evolution. Data Brief 2018, 16, 828–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fang, W.; We, Z. Metallic 1T-LixMoS2 Co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation. Catal. Sci. Technol. 2018, 8, 1375–1382. [Google Scholar] [CrossRef]
- Jian, W.; Bo, L.; Chen, J. Enhanced photocatalytic H2-production activity of CdxZn1–xS nanocrystals by surface loading MS (M = Ni, Co, Cu) species. Appl. Surf. Sci. 2012, 259, 118–123. [Google Scholar]
- Chen, T.; Song, C.; Fan, M. In-situ fabrication of CuS/g-C3N4, nanocomposites with enhanced photocatalytic H2 production activity via photoinduced interfacial charge transfer. Int. J. Hydrogen Energy 2017, 42, 12210–12219. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.; Eda, G.; Li, L.; Loh, K.; Zhang, H. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Yang, H.; Jin, Z.; Hu, H.; Lu, G.; Bi, Y. Fabrication and behaviors of CdS on Bi2MoO6 thin film photoanodes. RSC Adv. 2017, 7, 10774–10781. [Google Scholar] [CrossRef]
- Jarimavičiūtė-Žvalionienė, R.; Tamulevičius, S.; Andrulevičius, M.; Tomašiūnas, R.; Grigaliūnas, V. Photoluminescence and XPS Study of Selenium Treated Porous Silicon. In Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 371–374. [Google Scholar]
- Liu, D.; Jin, Z.; Bi, Y. Charge transition channel construction between a MOF and rGO by means of Co-Mo-S modification. Catal. Sci. Technol. 2017, 7, 4478–4488. [Google Scholar] [CrossRef]
- Jang, J.; Joshi, U.A.; Lee, J.S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Xin, L. Facile synthesis of truncated cube-like NiSe2, Single crystals for High-performance asymmetric supercapacitors. Chem. Eng. J. 2017, 330, 1334–1341. [Google Scholar] [CrossRef]
Semiconductor | Band Energy Eg (eV) | Valence Band EVB (eV) | Conduction Band ECB (eV) |
---|---|---|---|
CdS (n-type) | 2.4 | 2.0 | −0.4 |
CoSe2 (n-type) | −0.1 |
System | Lifetime <λ> (ns) | Pre-Exponential Factor A% | Average Lifetime <λ> (ns) | X2 |
---|---|---|---|---|
CoSe2 | 0.0059/4.1735/153.6543 | 99.76/0.05/0.18 | 0.00 | 1.48080 |
CdS | 4.1953/0.5532/79.9562 | 25.00/15.06/59.94 | 2.94 | 1.77483 |
30% | 3.2128/0.4006/41.0649 | 27.26/15.61/57.13 | 2.04 | 1.75398 |
Sample | SBET/(m2·g−1) | Pore Volume/(cm3·g−1) | Average Pore Size/nm |
---|---|---|---|
CdS | 50.1874 | 0.211466 | 15.1348 |
CoSe2/CdS | 13.0324 | 0.039481 | 13.2311 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, R.; Ma, X.; Wang, G.; Jin, Z. CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution. Catalysts 2019, 9, 616. https://doi.org/10.3390/catal9070616
Gan R, Ma X, Wang G, Jin Z. CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution. Catalysts. 2019; 9(7):616. https://doi.org/10.3390/catal9070616
Chicago/Turabian StyleGan, Ruizhou, Xiaohua Ma, Guorong Wang, and Zhiliang Jin. 2019. "CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution" Catalysts 9, no. 7: 616. https://doi.org/10.3390/catal9070616
APA StyleGan, R., Ma, X., Wang, G., & Jin, Z. (2019). CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution. Catalysts, 9(7), 616. https://doi.org/10.3390/catal9070616