Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Benzopinacolphosphites
2.2. Hydroformylation Experiments
2.3. Hydrolysis Experiments
3. Materials and Methods
3.1. Synthesis of Phosphites
3.2. X-ray Crystal Structual Analyses of 2a and 2d
3.3. Hydroformylation Experiments
3.4. Hydrolysis Experiments
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Börner, A.; Franke, R. Hydroformylation. Fundamentals, Processes, and Applications in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- van der Slot, S.C.; Duran, D.; Luten, J.; Kamer, P.C.J.; van Leeuwen, P.N.M. Rhodium Catalyzed Hydroformylation; van Leeuwen, P.W.N.M., Claver, C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 4 December 2014. [Google Scholar]
- Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, H.-W.; Cornils, B. Hydroformylation of alkenes: An industrial view of the status and importance. Adv. Catal. 2002, 47, 1–64. [Google Scholar] [CrossRef]
- Cornils, B.; Herrmann, W.A.; Beller, M.; Paciello, R. Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook in Four Volumes, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Wiese, K.-D.; Obst, D. Hydroformylation. In Catalytic Carbonylation Reactions; Beller, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–33. [Google Scholar]
- Gusevskaya, E.V.; Jiménez-Pinto, J.; Börner, A. Hydroformylation in the Realm of Scents. ChemCatChem 2014, 6, 382–411. [Google Scholar] [CrossRef]
- van Leeuwen, P.W.N.M.; Chadwick, J.C. Homogeneous Catalysts. Activity—Stability—Deactivation; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Christiansen, A.; Selent, D.; Spannenberg, A.; Köckerling, M.; Reinke, H.; Baumann, W.; Jiao, H.; Franke, R.; Börner, A. Heteroatom-substituted secondary phosphine oxides (HASPOs) as decomposition products and preligands in rhodium-catalysed hydroformylation. Chem. Eur. J. 2011, 17, 2120–2129. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, S.K.; Alam, T.M. 17O NMR investigation of phosphite hydrolysis mechanisms. Magn. Reson. Chem. 2007, 45, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Roobeek, C.F.; van Leeuwen, P.W.N.M. A Process for the Hydroformylation of Olefins. EP000000054986, 22 December 1980. [Google Scholar]
- Abatjoglou, A.G.; Bryant, D.R.; Maher, J.M. Stabilization of Phosphite Ligands in Hydroformylation Process. EP000000697391, 18 August 1995. [Google Scholar]
- van Leeuwen, P.W.N.M.; Roobeek, C.F. Hydroformylation of less reactive olefins with modified rhodium catalysts. J. Organomet. Chem. 1983, 258, 343–350. [Google Scholar] [CrossRef]
- van Rooy, A.; Orij, E.N.; Kamer, P.C.J.; van den Aardweg, F.; van Leeuwen, P.W.N.M. Hydroformylation of oct-1-ene with extremely high rates using rhodium catalysts containing bulky phosphites. J. Chem. Soc. Chem. Commun. 1991, 1096. [Google Scholar] [CrossRef]
- Jongsma, T.; Challa, G.; van Leeuwen, P.W.N.M. A mechanistic study of rhodium tri(o-t-butylphenyl)phosphite complexes as hydroformylation catalysts. J. Organomet. Chem. 1991, 421, 121–128. [Google Scholar] [CrossRef]
- Abatjoglou, A.G.; Billig, E.; Bryant, D.R. Transition Metal Complex Catalyzed Processes. US000004769498, 6 September 1988. [Google Scholar]
- Cuny, G.D.; Buchwald, S.L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized α.-olefins. J. Am. Chem. Soc. 1993, 115, 2066–2068. [Google Scholar] [CrossRef]
- Abatjoglou, A.G.; Billig, E.; Bryant, D.R. Bis-Phosphite Compounds. EP000000213639, 4 September 1986. [Google Scholar]
- van Leeuwen, P.W.N.M.; Roobeek, C.F.; Frijns, J.H.G.; Orpen, A.G. Characterization of the intermediates in the hydroformylation reaction catalyzed by platinum diphenylphosphinous acid complexes. Organometallics 1990, 9, 1211–1222. [Google Scholar] [CrossRef]
- Christiansen, A.; Selent, D.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. Reaction of Secondary Phosphine Oxides with Rhodium(I). Organometallics 2010, 29, 3139–3145. [Google Scholar] [CrossRef]
- Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Franke, R.; Börner, A. Secondary Phosphane Oxides as Preligands in Rhodium-Catalyzed Hydroformylation. ChemCatChem 2010, 2, 1278–1285. [Google Scholar] [CrossRef]
- Johnson, B.; Keck-Antoine, K.; Dejolier, B.; Allen, N.; Ortuoste, N.; Edge, M. Impact of improved phosphite hydrolytic stability on the processing stabilization of polypropylene. J. Vinyl Addit. Techn. 2005, 11, 136–142. [Google Scholar] [CrossRef]
- Oberhauser, W.; Manca, G. Catalytic Phosphite Hydrolysis under Neutral Reaction Conditions. Inorg. Chem. 2018, 57, 4824–4827. [Google Scholar] [CrossRef]
- Zhang, B.; Jiao, H.; Michalik, D.; Kloß, S.; Deter, L.M.; Selent, D.; Spannenberg, A.; Franke, R.; Börner, A. Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins. ACS Catal. 2016, 6, 7554–7565. [Google Scholar] [CrossRef][Green Version]
- Börner, A.; Dyballa, K.M.; Franke, R.; Selent, D. Phosphites with a Dihydroxyterphenyl with a Tetraphenyl Dioxaphospholane. EP000003293192, 7 September 2016. [Google Scholar]
- Börner, A.; Dyballa, K.M.; Franke, R.; Fridag, D.; Selent, D. Bis-Phosphites with an Asymmetric Biaryl Central Component. EP3029048, 4 December 2014. [Google Scholar]
- Börner, A.; Hess, D.; Kreidler, B.; Selent, D.; Wiese, K.-D. Bisphosphite Ligands for Hydroformylation Catalyzed by Transition Metals. WO002008071508, 13 December 2006. [Google Scholar]
- Börner, A.; Dyballa, K.M.; Franke, R.; Selent, D. Bis-Phosphites with 2,3-Biphenol Unit as Central Component. EP000003029045, 4 December 2014. [Google Scholar]
- Dyballa, K.M.; Franke, R. Novel Monophosphite Compound with an Ester Group. EP000003088407, 14 April 2016. [Google Scholar]
- Selent, D.; Franke, R.; Kubis, C.; Spannenberg, A.; Baumann, W.; Kreidler, B.; Börner, A. A New Diphosphite Promoting Highly Regioselective Rhodium-Catalyzed Hydroformylation. Organometallics 2011, 30, 4509–4514. [Google Scholar] [CrossRef]
Phosphite | -O-R | Base | Solvent | T [°C] | Yield [%] |
---|---|---|---|---|---|
2a | NEt3 | toluene | 20 | 63 | |
2b | NEt3 | toluene | −20 | 76 | |
2c | NEt3 | toluene | 20 | 68 | |
2d | NEt3 | toluene | 20 | 83 | |
2e | NEt3 | toluene | −20 | 87 | |
2f | n-BuLi | THF | −20 | 77 | |
2g | n-BuLi | THF | −20 | >99 | |
2h | n-BuLi | THF | −20 | 73 | |
2i | NEt3 | toluene | 20 | 93 | |
2j | n-BuLi | THF | −20 | 55 | |
2k | n-BuLi | THF | 0 | 71 | |
2l | n-BuLi | THF | 0 | 55 |
Entry | Ligand | T [°C] | Yield of Aldehydes c [%] | n-Selectivity c [%] | kobs.d [min−1] |
---|---|---|---|---|---|
1 | 2a | 120 | 40 | 19.4 | - |
2 | 2b | 120 | 99 | 17.6 | 0.223 |
3 | 2c | 120 | 9 | 32.1 | - |
4 | 2d | 120 | 3 | 40.8 | - |
5 | 2e | 120 | 97 | 18.9 | 0.266 |
6 | 2f | 120 | 82 | 18.0 | - |
7 | 2f | 110 | 98 | 26.5 | 0.067 |
8 | 2g | 120 | 71 | 15.9 | - |
9 | 2g | 110 | 94 | 21.5 | 0.064 |
10 | 2h | 120 | 57 | 22.2 | - |
11 | 2h | 110 | 97 | 15.6 | 0.304 |
12 | 2h | 100 | 90 | 10.7 | - |
14 | 2i | 120 | 91 | 15.0 | 0.116 |
15 | 2j | 120 | 96 | 17.0 | 0.284 |
16 | 2k | 120 | 93 | 29.7 | 0.067 |
17 | 2l | 120 | 18 | 33.6 | - |
Entry | Ligand | kobs.b [10−4 min−1] | t1/2 b [h] | Complete Decomposition c [h] |
---|---|---|---|---|
1 | 2a | 6.093 | 19.0 | 171 |
2 | 2b | 2.583 | 44.7 | 503 |
3 | 2c | 6.584 | 17.5 | 179 |
4 | 2d | - | - | 122 |
5 | 2e | - | - | 3626 |
6 | 2f | 0.015 d | 7944.5 d | 3145 |
7 | 2g | 0.028 d | 4139.5 d | 1495 |
8 | 2h | 0.383 | 301.7 | 2259 |
9 | 2i | - | - | 47 |
10 | 2j | 1.226 | 94.3 | 755 |
11 | 2k | - | - | >10,740 |
12 | 2l | - | - | >10,740 |
Entry | Ligand | kobs.b [10−3 min−1] | t1/2 b [h] | Complete Decomposition c [h] |
---|---|---|---|---|
1 | 2a | 131.435 | 0.1 | 1.0 |
2 | 2b | 63.802 | 0.2 | 2.0 |
3 | 2c | 92.091 | 0.1 | 1.0 |
4 | 2d | 245.329 | 0.05 | 1.0 |
5 | 2e | 0.363 d | 31.8 d | 13.5 |
6 | 2f | 0.404 d | 28.6 d | 10.0 |
7 | 2g | 6.020 d | 1.9 d | 3.0 |
8 | 2h | 0.019 | 0.6 | 3.5 |
9 | 2i | - | - | 0.5 |
10 | 2j | 0.068 | 0.2 | 2.5 |
11 | 2k | - | - | >225.0 |
12 | 2l | - | - | >225.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloß, S.; Selent, D.; Spannenberg, A.; Franke, R.; Börner, A.; Sharif, M. Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts 2019, 9, 1036. https://doi.org/10.3390/catal9121036
Kloß S, Selent D, Spannenberg A, Franke R, Börner A, Sharif M. Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts. 2019; 9(12):1036. https://doi.org/10.3390/catal9121036
Chicago/Turabian StyleKloß, Svenja, Detlef Selent, Anke Spannenberg, Robert Franke, Armin Börner, and Muhammad Sharif. 2019. "Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability" Catalysts 9, no. 12: 1036. https://doi.org/10.3390/catal9121036
APA StyleKloß, S., Selent, D., Spannenberg, A., Franke, R., Börner, A., & Sharif, M. (2019). Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts, 9(12), 1036. https://doi.org/10.3390/catal9121036