Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Benzopinacolphosphites
2.2. Hydroformylation Experiments
2.3. Hydrolysis Experiments
3. Materials and Methods
3.1. Synthesis of Phosphites
3.2. X-ray Crystal Structual Analyses of 2a and 2d
3.3. Hydroformylation Experiments
3.4. Hydrolysis Experiments
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Börner, A.; Franke, R. Hydroformylation. Fundamentals, Processes, and Applications in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- van der Slot, S.C.; Duran, D.; Luten, J.; Kamer, P.C.J.; van Leeuwen, P.N.M. Rhodium Catalyzed Hydroformylation; van Leeuwen, P.W.N.M., Claver, C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 4 December 2014. [Google Scholar]
- Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, H.-W.; Cornils, B. Hydroformylation of alkenes: An industrial view of the status and importance. Adv. Catal. 2002, 47, 1–64. [Google Scholar] [CrossRef]
- Cornils, B.; Herrmann, W.A.; Beller, M.; Paciello, R. Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook in Four Volumes, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Wiese, K.-D.; Obst, D. Hydroformylation. In Catalytic Carbonylation Reactions; Beller, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–33. [Google Scholar]
- Gusevskaya, E.V.; Jiménez-Pinto, J.; Börner, A. Hydroformylation in the Realm of Scents. ChemCatChem 2014, 6, 382–411. [Google Scholar] [CrossRef]
- van Leeuwen, P.W.N.M.; Chadwick, J.C. Homogeneous Catalysts. Activity—Stability—Deactivation; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Christiansen, A.; Selent, D.; Spannenberg, A.; Köckerling, M.; Reinke, H.; Baumann, W.; Jiao, H.; Franke, R.; Börner, A. Heteroatom-substituted secondary phosphine oxides (HASPOs) as decomposition products and preligands in rhodium-catalysed hydroformylation. Chem. Eur. J. 2011, 17, 2120–2129. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, S.K.; Alam, T.M. 17O NMR investigation of phosphite hydrolysis mechanisms. Magn. Reson. Chem. 2007, 45, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Roobeek, C.F.; van Leeuwen, P.W.N.M. A Process for the Hydroformylation of Olefins. EP000000054986, 22 December 1980. [Google Scholar]
- Abatjoglou, A.G.; Bryant, D.R.; Maher, J.M. Stabilization of Phosphite Ligands in Hydroformylation Process. EP000000697391, 18 August 1995. [Google Scholar]
- van Leeuwen, P.W.N.M.; Roobeek, C.F. Hydroformylation of less reactive olefins with modified rhodium catalysts. J. Organomet. Chem. 1983, 258, 343–350. [Google Scholar] [CrossRef]
- van Rooy, A.; Orij, E.N.; Kamer, P.C.J.; van den Aardweg, F.; van Leeuwen, P.W.N.M. Hydroformylation of oct-1-ene with extremely high rates using rhodium catalysts containing bulky phosphites. J. Chem. Soc. Chem. Commun. 1991, 1096. [Google Scholar] [CrossRef]
- Jongsma, T.; Challa, G.; van Leeuwen, P.W.N.M. A mechanistic study of rhodium tri(o-t-butylphenyl)phosphite complexes as hydroformylation catalysts. J. Organomet. Chem. 1991, 421, 121–128. [Google Scholar] [CrossRef]
- Abatjoglou, A.G.; Billig, E.; Bryant, D.R. Transition Metal Complex Catalyzed Processes. US000004769498, 6 September 1988. [Google Scholar]
- Cuny, G.D.; Buchwald, S.L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized α.-olefins. J. Am. Chem. Soc. 1993, 115, 2066–2068. [Google Scholar] [CrossRef]
- Abatjoglou, A.G.; Billig, E.; Bryant, D.R. Bis-Phosphite Compounds. EP000000213639, 4 September 1986. [Google Scholar]
- van Leeuwen, P.W.N.M.; Roobeek, C.F.; Frijns, J.H.G.; Orpen, A.G. Characterization of the intermediates in the hydroformylation reaction catalyzed by platinum diphenylphosphinous acid complexes. Organometallics 1990, 9, 1211–1222. [Google Scholar] [CrossRef]
- Christiansen, A.; Selent, D.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. Reaction of Secondary Phosphine Oxides with Rhodium(I). Organometallics 2010, 29, 3139–3145. [Google Scholar] [CrossRef]
- Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Franke, R.; Börner, A. Secondary Phosphane Oxides as Preligands in Rhodium-Catalyzed Hydroformylation. ChemCatChem 2010, 2, 1278–1285. [Google Scholar] [CrossRef]
- Johnson, B.; Keck-Antoine, K.; Dejolier, B.; Allen, N.; Ortuoste, N.; Edge, M. Impact of improved phosphite hydrolytic stability on the processing stabilization of polypropylene. J. Vinyl Addit. Techn. 2005, 11, 136–142. [Google Scholar] [CrossRef]
- Oberhauser, W.; Manca, G. Catalytic Phosphite Hydrolysis under Neutral Reaction Conditions. Inorg. Chem. 2018, 57, 4824–4827. [Google Scholar] [CrossRef]
- Zhang, B.; Jiao, H.; Michalik, D.; Kloß, S.; Deter, L.M.; Selent, D.; Spannenberg, A.; Franke, R.; Börner, A. Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins. ACS Catal. 2016, 6, 7554–7565. [Google Scholar] [CrossRef] [Green Version]
- Börner, A.; Dyballa, K.M.; Franke, R.; Selent, D. Phosphites with a Dihydroxyterphenyl with a Tetraphenyl Dioxaphospholane. EP000003293192, 7 September 2016. [Google Scholar]
- Börner, A.; Dyballa, K.M.; Franke, R.; Fridag, D.; Selent, D. Bis-Phosphites with an Asymmetric Biaryl Central Component. EP3029048, 4 December 2014. [Google Scholar]
- Börner, A.; Hess, D.; Kreidler, B.; Selent, D.; Wiese, K.-D. Bisphosphite Ligands for Hydroformylation Catalyzed by Transition Metals. WO002008071508, 13 December 2006. [Google Scholar]
- Börner, A.; Dyballa, K.M.; Franke, R.; Selent, D. Bis-Phosphites with 2,3-Biphenol Unit as Central Component. EP000003029045, 4 December 2014. [Google Scholar]
- Dyballa, K.M.; Franke, R. Novel Monophosphite Compound with an Ester Group. EP000003088407, 14 April 2016. [Google Scholar]
- Selent, D.; Franke, R.; Kubis, C.; Spannenberg, A.; Baumann, W.; Kreidler, B.; Börner, A. A New Diphosphite Promoting Highly Regioselective Rhodium-Catalyzed Hydroformylation. Organometallics 2011, 30, 4509–4514. [Google Scholar] [CrossRef]
Phosphite | -O-R | Base | Solvent | T [°C] | Yield [%] |
---|---|---|---|---|---|
2a | | NEt3 | toluene | 20 | 63 |
2b | | NEt3 | toluene | −20 | 76 |
2c | | NEt3 | toluene | 20 | 68 |
2d | | NEt3 | toluene | 20 | 83 |
2e | | NEt3 | toluene | −20 | 87 |
2f | | n-BuLi | THF | −20 | 77 |
2g | | n-BuLi | THF | −20 | >99 |
2h | | n-BuLi | THF | −20 | 73 |
2i | | NEt3 | toluene | 20 | 93 |
2j | | n-BuLi | THF | −20 | 55 |
2k | | n-BuLi | THF | 0 | 71 |
2l | | n-BuLi | THF | 0 | 55 |
Entry | Ligand | T [°C] | Yield of Aldehydes c [%] | n-Selectivity c [%] | kobs.d [min−1] |
---|---|---|---|---|---|
1 | 2a | 120 | 40 | 19.4 | - |
2 | 2b | 120 | 99 | 17.6 | 0.223 |
3 | 2c | 120 | 9 | 32.1 | - |
4 | 2d | 120 | 3 | 40.8 | - |
5 | 2e | 120 | 97 | 18.9 | 0.266 |
6 | 2f | 120 | 82 | 18.0 | - |
7 | 2f | 110 | 98 | 26.5 | 0.067 |
8 | 2g | 120 | 71 | 15.9 | - |
9 | 2g | 110 | 94 | 21.5 | 0.064 |
10 | 2h | 120 | 57 | 22.2 | - |
11 | 2h | 110 | 97 | 15.6 | 0.304 |
12 | 2h | 100 | 90 | 10.7 | - |
14 | 2i | 120 | 91 | 15.0 | 0.116 |
15 | 2j | 120 | 96 | 17.0 | 0.284 |
16 | 2k | 120 | 93 | 29.7 | 0.067 |
17 | 2l | 120 | 18 | 33.6 | - |
Entry | Ligand | kobs.b [10−4 min−1] | t1/2 b [h] | Complete Decomposition c [h] |
---|---|---|---|---|
1 | 2a | 6.093 | 19.0 | 171 |
2 | 2b | 2.583 | 44.7 | 503 |
3 | 2c | 6.584 | 17.5 | 179 |
4 | 2d | - | - | 122 |
5 | 2e | - | - | 3626 |
6 | 2f | 0.015 d | 7944.5 d | 3145 |
7 | 2g | 0.028 d | 4139.5 d | 1495 |
8 | 2h | 0.383 | 301.7 | 2259 |
9 | 2i | - | - | 47 |
10 | 2j | 1.226 | 94.3 | 755 |
11 | 2k | - | - | >10,740 |
12 | 2l | - | - | >10,740 |
Entry | Ligand | kobs.b [10−3 min−1] | t1/2 b [h] | Complete Decomposition c [h] |
---|---|---|---|---|
1 | 2a | 131.435 | 0.1 | 1.0 |
2 | 2b | 63.802 | 0.2 | 2.0 |
3 | 2c | 92.091 | 0.1 | 1.0 |
4 | 2d | 245.329 | 0.05 | 1.0 |
5 | 2e | 0.363 d | 31.8 d | 13.5 |
6 | 2f | 0.404 d | 28.6 d | 10.0 |
7 | 2g | 6.020 d | 1.9 d | 3.0 |
8 | 2h | 0.019 | 0.6 | 3.5 |
9 | 2i | - | - | 0.5 |
10 | 2j | 0.068 | 0.2 | 2.5 |
11 | 2k | - | - | >225.0 |
12 | 2l | - | - | >225.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloß, S.; Selent, D.; Spannenberg, A.; Franke, R.; Börner, A.; Sharif, M. Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts 2019, 9, 1036. https://doi.org/10.3390/catal9121036
Kloß S, Selent D, Spannenberg A, Franke R, Börner A, Sharif M. Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts. 2019; 9(12):1036. https://doi.org/10.3390/catal9121036
Chicago/Turabian StyleKloß, Svenja, Detlef Selent, Anke Spannenberg, Robert Franke, Armin Börner, and Muhammad Sharif. 2019. "Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability" Catalysts 9, no. 12: 1036. https://doi.org/10.3390/catal9121036
APA StyleKloß, S., Selent, D., Spannenberg, A., Franke, R., Börner, A., & Sharif, M. (2019). Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability. Catalysts, 9(12), 1036. https://doi.org/10.3390/catal9121036