Study on the Catalytic Pyrolysis Mechanism of Lignite by Using Extracts as Model Compounds
Abstract
:1. Introduction
2. Results and Discussions
2.1. Proximate and Ultimate Analyses
2.2. GC×GC-MS Analysis of Extracts
2.3. TG-MS Analysis of Extract with/without Catalyst
2.3.1. Thermal Behaviors of Extract with/without Catalyst
2.3.2. Evolution of Gaseous Products
2.4. Kinetic Analysis
3. Experiments
3.1. Experimental Procedures
3.2. GC×GC-MS Analysis
3.3. TG-MS Analysis
3.4. Kinetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dudley, B. BP Statistical Review of World Energy; ISO 14001; Pureprint Group Limited: Uckfield, UK, 2018. [Google Scholar]
- Lievens, C.; Ci, D.; Bai, Y.; Ma, L.; Zhang, R.; Chen, J.Y.; Gai, Q.; Long, Y.; Guo, X. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS. Fuel Process. Technol. 2013, 116, 85–93. [Google Scholar] [CrossRef]
- Li, G.; Yan, L.; Zhao, R.; Li, F. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5. Fuel 2014, 130, 154–159. [Google Scholar] [CrossRef]
- Li, B.; Lv, W.; Zhang, Q.; Wang, T.; Ma, L. Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. J. Anal. Appl. Pyrolysis 2014, 108, 295–300. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, Y.; Zhang, K. Influence of Three Different Catalysts (KCl, CaO, and Fe2O3) on the Reactivity and Mechanism of Low-Rank Coal Pyrolysis. Energy Fuel 2016, 30, 2428–2433. [Google Scholar] [CrossRef]
- Altuntas, N.; Yurum, Y. Influence of Catalysts on the Pyrolysis of Turkish Zonguldak Bituminous Coal. Energy Fuel 2000, 14, 820–827. [Google Scholar] [CrossRef]
- Kang, S.G.; Zong, Z.M.; Shui, H.F.; Wang, Z.C.; Wei, X.Y. Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS+S and SO42−/ZrO2. Energy 2011, 36, 41–45. [Google Scholar] [CrossRef]
- Monterroso, R.; Fan, M.; Zhang, F.; Gao, Y.; Popa, T.; Argyle, M.D.; Towler, B.; Sun, Q.Y. Influences of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel 2014, 116, 341–349. [Google Scholar] [CrossRef]
- He, L.; Hui, H.L.; Li, S.G.; Lin, W.G. Production of light aromatic hydrocarbons by catalytic. Fuel 2018, 216, 227–232. [Google Scholar] [CrossRef]
- Shi, Z.; Jin, L.; Zhou, Y.; Li, H.; Li, Y.; Hu, H. In-situ analysis of catalytic pyrolysis of Baiyinhua coal with pyrolysis time-of-flight mass spectrometry. Fuel 2018, 227, 386–393. [Google Scholar] [CrossRef]
- Seitz, M.; Heschel, W.; Nagler, T.; Nowak, S.; Zimmermann, J.; Stam-Creutz, T.; Frank, W.; Appelt, J.; Bieling, S.; Meyer, B. Influence of catalysts on the pyrolysis of lignites. Fuel 2014, 134, 669–676. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Klabunde, K.J. Catalytic and non-catalytic flow-pyrolysis of bibenzyl. Possible homolytic and heterolytic processes on basic CaO. Fuel Process. Technol. 1981, 4, 73–84. [Google Scholar] [CrossRef]
- Wang, M.F.; Zuo, Z.J.; Ren, R.P.; Gao, Z.H.; Huang, W. Theoretical Study on Catalytic Pyrolysis of Benzoic Acid as a Coal-Based Model Compound. Energy Fuels 2016, 30, 2833–2840. [Google Scholar] [CrossRef]
- Song, Q.; Cai, J.; Zhang, J.; Yu, W.; Wang, F.; Xu, J. Hydrogenation and cleavage of the C-O bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst. Chin. J. Catal. 2013, 34, 651–658. [Google Scholar] [CrossRef]
- Pinto, I.G.; Lobo, L.S.; Cabrita, I. Effect of coal pre-treatment with swelling solvents on coal liquefaction. Fuel 1999, 78, 629–634. [Google Scholar] [CrossRef]
- Zou, L.; Jin, L.; Li, Y.; Zhu, S.; Hu, H.Q. Influence of tetrahydrofuran extraction on lignite pyrolysis under nitrogen. J. Anal. Appl. Pyrolysis 2015, 112, 113–120. [Google Scholar] [CrossRef]
- Takanohashi, T.Y.; Iino, M. Extraction and Swelling of Low-Rank Coals with Various Solvents at Room Temperature. Energy Fuel 1996, 10, 1128–1132. [Google Scholar] [CrossRef]
- Qin, X.; Jiao, T.; Zhang, Y.; Yu, J.; Liang, P. Influence of solvent pretreatment on pyrolysis characteristic of high-sulfur bituminous coal. J. Anal. Appl. Pyrolysis 2018, 135, 54–59. [Google Scholar] [CrossRef]
- Tran, Q.A.; Stanger, R.; Xie, W.; Smith, N.; Lucas, J.; Wall, T. Impacts of Mild Pyrolysis and Solvent Extraction on Coking Coal Thermoplasticity. Energy Fuel 2016, 30, 9293–9302. [Google Scholar] [CrossRef]
- Iino, M.; Takanohashi, T.; Obara, S.; Tsueta, H.; Sanokawa, Y. Characterization of the extracts and residues from CS2-N-methyl-2-pyrrolidinone mixed solvent extraction. Fuel 1989, 68, 1588–1593. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, H.; Jin, L.; He, X.F.; Wu, B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor. Fuel Process. Technol. 2011, 92, 780–786. [Google Scholar] [CrossRef]
- Shi, D.L.; Wei, X.Y.; Fan, X.; Zong, Z.M.; Chen, B.; Zhao, Y.P.; Wang, Y.G.; Cao, J.P. Characterizations of the Extracts from Geting Bituminous Coal by Spectrometries. Energy Fuel 2013, 27, 3709–3717. [Google Scholar] [CrossRef]
- Yamashita, H.; Yoshida, S.; Tomitat, A. Local Structures of Metals Dispersed on Coal. 1. Change of Local Structure of Iron Species on Brown Coal during Heat Treatment. Energy Fuel 1989, 3, 686–692. [Google Scholar] [CrossRef]
- Yamashita, H.; Tomita, A. Local Structures of Metals Dispersed on Coal. 5. Influence of Coal, Catalyst Precursor, and Catalyst Preparation Method on the Structure of Iron Species during Heat Treatment and Steam Gasification. Ind. Eng. Chem. Res. 1993, 32, 409–415. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Song, Q.; Lv, J.; Shu, Y.; Liang, X.; Shu, X. Influences of Iron Ores on the Pyrolysis Characteristics of a Low-Rank Bituminous Coal. Energy Fuel 2016, 30, 3831–3839. [Google Scholar] [CrossRef]
- Cyores, R.; Soudan-Moinet, C. Pyrolysis of coal and iron oxides mixtures.1. Influence of iron oxides on the pyrolysis of coal. Fuel 1980, 59, 48–54. [Google Scholar]
- Boudou, J.B.; Alain, E.; Furdi, G.; Mareche, J.F.; Albiniak, A. Influences of FeCl3 (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel 1998, 77, 601–606. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Q.; Guo, X.; Wu, W.; Liu, Z. Pyrolysis behavior and bonding information of coal—A TGA study. Fuel Process. Technol. 2013, 108, 125–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.T.; Liang, W.S.; Huang, W.; Zuo, Z.J. Influence of the valence state change of iron oxidation for pyrolysis by using density functional theory. Appl. Surf. Sic. 1993, 32, 409–415. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Shen, J.; Zhang, H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation. Energy Convers. Manag. 2014, 87, 1027–1038. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Huang, W.; Yang, J.; Xue, H. Coal pyrolysis characteristics by TG-MS and its late gas generation potential. Fuel 2015, 156, 243–253. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Shen, J.; Zhang, H. Pyrolysis of superfine pulverized coal. Part 2. Mechanisms of carbon monoxide formation. Energy Convers. Manag. 2014, 87, 1039–1049. [Google Scholar] [CrossRef]
- Arenillas, A.; Rubiera, F.; Pis, J.; Cuesta, M.; Iglesias, M.; Jimenez, A.; Suarez-Ruiz, I. Thermal behaviour during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrolysis 2003, 68–69, 371–385. [Google Scholar] [CrossRef]
- Szabo, G.V.; Till, F.; Szekely, T. Investigation of subbituminous coals by thermogravimetry-mass spectrometry Part 1. formation of hydrocarbon products. Thermochim. Acta 1990, 170, 167–177. [Google Scholar] [CrossRef]
- Yan, L.; Bai, Y.; Zhao, R.; Li, F.; Xie, K. Correlation between coal structure and release of the two organic compounds during pyrolysis. Fuel 2015, 145, 12–17. [Google Scholar] [CrossRef]
- Tian, B.; Qiao, Y.; Bai, L.; Feng, W.; Jiang, Y.; Tian, Y. Pyrolysis behavior and kinetics of the trapped small molecular phase in a lignite. Energy Convers. Manag. 2017, 140, 109–120. [Google Scholar] [CrossRef]
- Kawni, K.; Bhattacharya, S. Pyrolysis kinetics and reactivity of algae–coal blends. Biomass Bioenergy 2013, 55, 291–298. [Google Scholar]
- Westhuizen, A.C.; Crouch, A.; Sandra, P. The use of GC×GC with time-of-flight mass spectrometry to investigate dienes and Diels-Alder polymerisation products in high-temperature Fischer-Tropsch-based fuels. J. Sep. Sci. 2008, 31, 3423–3428. [Google Scholar] [CrossRef]
- Pierce, K.M.; Hoggard, J.C.; Mohler, R.E.; Synovec, R.E. Recent advancements in comprehensive two-dimensional separations with chemometrics. J. Chromatogr. A 2008, 1184, 341–352. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Liang, L.; Guan, G.; Huang, W. Catalytic depolymerization of coal char over iron-based catalyst: Potential method for producing high value-added chemicals. Fuel 2017, 210, 329–333. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, X.; Wei, L.; Wang, H. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal. Energy Convers. Manag. 2007, 48, 797–802. [Google Scholar] [CrossRef]
- Miura, K.; Maki, T. A simple method for estimating f(E) and K0(E) in the distributed activation energy model. Energy Fuel 1998, 12, 864–869. [Google Scholar] [CrossRef]
Samples | Proximate Analyses (wt %) | Ultimate Analyses (wt %, daf) | Atomic Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vd | C | H | N | S | O* | H/C | O/C | |||
RC | 15.81 | 9.93 | 57.69 | 63.46 | 4.73 | 2.08 | 0.92 | 28.81 | 0.894 | 0.340 | ||
RE | 11.39 | 10.35 | 55.38 | 64.83 | 4.38 | 2.04 | 0.96 | 27.79 | 0.811 | 0.321 | ||
EX | - | - | - | 51.69 | 12.34 | 0.73 | 1.08 | 34.16 | 2.865 | 0.496 |
E (kJ/mol) | A (min−1) | |
---|---|---|
EX | 146.63 | 4.57 × 108 |
EX-Fe(N) | 122.17 | 1.32 × 108 |
EX-Fe(C) | 102.39 | 1.45 × 104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Q.; Liang, L.; Huang, W. Study on the Catalytic Pyrolysis Mechanism of Lignite by Using Extracts as Model Compounds. Catalysts 2019, 9, 953. https://doi.org/10.3390/catal9110953
Liu J, Zhang Q, Liang L, Huang W. Study on the Catalytic Pyrolysis Mechanism of Lignite by Using Extracts as Model Compounds. Catalysts. 2019; 9(11):953. https://doi.org/10.3390/catal9110953
Chicago/Turabian StyleLiu, Jianwei, Qian Zhang, Litong Liang, and Wei Huang. 2019. "Study on the Catalytic Pyrolysis Mechanism of Lignite by Using Extracts as Model Compounds" Catalysts 9, no. 11: 953. https://doi.org/10.3390/catal9110953