Next Article in Journal
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)
Previous Article in Journal / Special Issue
Highly Active Catalysts Based on the Rh4(CO)12 Cluster Supported on Ce0.5Zr0.5 and Zr Oxides for Low-Temperature Methane Steam Reforming
Open AccessArticle

Methane and Ethane Steam Reforming over MgAl2O4-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application

Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
*
Author to whom correspondence should be addressed.
Catalysts 2019, 9(10), 801; https://doi.org/10.3390/catal9100801
Received: 13 August 2019 / Revised: 19 September 2019 / Accepted: 19 September 2019 / Published: 25 September 2019
(This article belongs to the Special Issue Catalysts for Syngas Production)
Solar concentrators employed in conjunction with highly efficient micro- and meso-channel reactors offer the potential for cost-effective upgrading of the energy content of natural gas, providing a near-term path towards a future solar-fuel economy with reduced carbon dioxide emissions. To fully exploit the heat and mass transfer advantages offered by micro- and meso-channel reactors, highly active and stable natural gas steam reforming catalysts are required. In this paper, we report the catalytic performance of MgAl2O4-supported Rh (5 wt.%), Ir (5 wt.%), and Ni (15 wt.%) catalysts used for steam reforming of natural gas. Both Rh- and Ir-based catalysts are known to be more active and durable than conventional Ni-based formulations, and recently Ir has been reported to be more active than Rh for methane steam reforming on a turnover basis. Thus, the effectiveness of all three metals to perform natural gas steam reforming was evaluated in this study. Here, the Rh- and Ir-supported catalysts both exhibited higher activity than Ni for steam methane reforming. However, using simulated natural gas feedstock (94.5% methane, 4.0% ethane, 1.0% propane, and 0.5% butane), the Ir catalyst was the least active (on a turnover basis) for steam reforming of higher hydrocarbons (C2+) contained in the feedstock when operated at <750 °C. To further investigate the role of higher hydrocarbons, we used an ethane feed and found that hydrogenolysis precedes the steam reforming reaction and that C–C bond scission over Ir is kinetically slow compared to Rh. Catalyst durability studies revealed the Rh catalyst to be stable under steam methane reforming conditions, as evidenced by two 100-hour duration experiments performed at 850 and 900 °C (steam to carbon [S/C] molar feed ratio = 2.0 mol). However, with the natural gas simulant feed, the Rh catalyst exhibited catalyst deactivation, which we attribute to coking deposits derived from higher hydrocarbons contained in the feedstock. Increasing the S/C molar feed ratio from 1.5 to 2.0 reduced the deactivation rate and stable catalytic performance was demonstrated for 120 h when operated at 850 °C. However, catalytic deactivation was observed when operating at 900 °C. While improvements in steam reforming performance can be achieved through choice of catalyst composition, this study also highlights the importance of considering the effect of higher hydrocarbons contained in natural gas, operating conditions (e.g., temperature, S/C feed ratio), and their effect on catalyst stability. The results of this study conclude that a Rh-supported catalyst was developed that enables very high activities and excellent catalytic stability for both the steam reforming of methane and other higher hydrocarbons contained in natural gas, and under conditions of operation that are amendable to solar thermochemical operations. View Full-Text
Keywords: heterogeneous catalysis; syngas production; solar thermochemical; iridium catalyst; rhodium catalyst heterogeneous catalysis; syngas production; solar thermochemical; iridium catalyst; rhodium catalyst
Show Figures

Figure 1

MDPI and ACS Style

Saavedra Lopez, J.; Lebarbier Dagle, V.; Deshmane, C.A.; Kovarik, L.; Wegeng, R.S.; Dagle, R.A. Methane and Ethane Steam Reforming over MgAl2O4-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application. Catalysts 2019, 9, 801.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop