Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis of Diatomite
2.2. Decomposition and Reduction Study of the Catalyst Precursor
2.3. Textural Investigation of the Catalyst
2.4. Adsorptive Behavior of the Catalyst
2.5. Effect of Alkali on the Activity of Catalyst
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Characterization
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fu, Z.W.; Meng, Y.Z. research progress in the phosgene-free and direct synthesis of dimethyl carbonate from CO2 and methanol. In Chemistry beyond Chlorine; Springer International Publishing: Cham, Switzerland, 2016; Chapter 13; pp. 363–386. [Google Scholar]
- Zhou, Y.J.; Fu, Z.W.; Wang, S.J.; Xiao, M.; Han, D.M.; Meng, Y.Z. Electrochemical synthesis of dimethyl carbonate from CO2 and methanol over carbonaceous material supported DBU in a capacitor-like cell reactor. RSC Adv. 2016, 6, 40010–40016. [Google Scholar] [CrossRef]
- Ono, Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal. A Gen. 1997, 155, 133–166. [Google Scholar] [CrossRef]
- Santos, B.A.V.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Review for the direct synthesis of dimethyl carbonate. ChemBioEng Rev. 2015, 1, 214–229. [Google Scholar] [CrossRef]
- Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Accounts Chem. Res. 2002, 35, 706–716. [Google Scholar] [CrossRef]
- Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids. Chem. Rev. 1999, 99, 475–493. [Google Scholar] [CrossRef] [PubMed]
- Han, M.S.; Lee, B.G.; Suh, I.; Kim, H.S.; Ahn, B.S.; Hong, S.I. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts. J. Mol. Catal. A Chem. 2001, 170, 225–234. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsumi, T. Hydrotalcite-type materials as catalysts for the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Microporous Mesoporous Mater. 1998, 22, 399–407. [Google Scholar] [CrossRef]
- Puga, J.; Jones, M.E.; Molzahn, D.C.; Hartwell, G.E. Production of Dialkyl Carbonates from Alkanol, Carbon Monoxide and Oxygen Using a Novel Copper Containing Catalyst, or a Known Catalyst with a Chloro-Carbon Promoter; Dow Chemical Company: Midland, MI, USA, 1995. [Google Scholar]
- Jia, G.; Gao, Y.F.; Zhang, W.; Wang, H.; Gao, Z.Z.; Li, C.H.; Liu, J.R. Metal-organic frameworks as heterogeneous catalysts for electrocatalytic oxidative carbonylation of methanol to dimethyl carbonate. Electrochem. Commun. 2013, 34, 211–214. [Google Scholar] [CrossRef]
- Cai, Q.H.; Lu, B.; Guo, L.J.; Shan, Y.K. Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal. Commun. 2009, 10, 605–609. [Google Scholar] [CrossRef]
- Akune, T.; Morita, Y.; Shirakawa, S.; Katagiri, K.; Inumaru, K. ZrO2 nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: Catalytic activity and elucidation of active sites. Langmuir 2018, 34, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Aouissi, A.; Al-Othman, Z.A.; Al-Amro, A. Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 keggin-type heteropolyanion. Int. J. Mol. Sci. 2010, 11, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Liu, Z.T.; Liu, Z.W.; Lu, J. DMC formation over Ce0.5Zr0.5O2 prepared by complex-decomposition method. Catal. Lett. 2009, 129, 428–436. [Google Scholar] [CrossRef]
- La, K.W.; Jung, J.C.; Kim, H.; Baeck, S.H.; Song, I.K. Effect of acid-base properties of H3PW12O40/CexTi1-xO2 catalysts on the direct synthesis of dimethyl carbonate from methanol and carbon dioxide: A TPD study of H3PW12O40/CexTi1-xO2 catalysts. J. Mol. Catal. A Chem. 2007, 269, 41–45. [Google Scholar] [CrossRef]
- Wu, X.L.; Xiao, M.; Meng, Y.Z.; Lu, Y.X. Direct synthesis of dimethyl carbonate on H3PO4 modified V2O5. J. Mol. Catal. A Chem. 2005, 238, 158–162. [Google Scholar] [CrossRef]
- Almusaiteer, K. Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts. Catal. Commun. 2009, 10, 1127–1131. [Google Scholar] [CrossRef]
- Bansode, A.; Urakawa, A. Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal. 2014, 4, 3877–3880. [Google Scholar] [CrossRef]
- Stoian, D.; Medina, F.; Urakawa, A. Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine. ACS Catal. 2018, 8, 3181–3193. [Google Scholar] [CrossRef]
- Pimprom, S.; Sriboonkham, K.; Dittanet, P.; Föttinger, K.; Rupprechter, G.; Kongkachuichay, P. Synthesis of copper–nickel/SBA-15 from rice husk ash catalyst fordimethyl carbonate production from methanol and carbon dioxide. J. Ind. Eng. Chem. 2015, 31, 156–166. [Google Scholar] [CrossRef]
- Kang, K.H.; Lee, C.H.; Kim, D.B.; Jang, B.; Song, I.K. NiO/CeO2–ZnO Nano-catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J. Nanosci. Nanotechnol. 2014, 14, 8693–8698. [Google Scholar] [CrossRef] [PubMed]
- Tamboli, A.H.; Chaugule, A.A.; Kim, H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J. 2017, 323, 530–544. [Google Scholar] [CrossRef]
- Devaiah, D.; Reddy, L.H.; Park, S.E.; Reddy, B.M. Ceria–zirconia mixed oxides: Synthetic methods and applications. Catal. Rev. 2018, 60, 177–277. [Google Scholar] [CrossRef]
- Li, H.S.; Zhong, S.H.; Wang, J.W.; Xiao, X.F. Effect of K2O on adsorption and reaction of CO2 and CH3OH over Cu-Ni/ZrO2-SiO2 catalyst for synthesis of dimethyl carbonate. Chin. J. Catal. 2001, 22, 353–357. [Google Scholar]
- Zhong, S.H.; Li, H.S.; Wang, J.W.; Xiao, X.F. Study on Cu-Ni/ZrO2-SiO4 catalyst for direct synthesis of dimethyl carbonate from CO2 and CH3OH. J. Catal. 2000, 21, 117–120. [Google Scholar]
- Zhong, S.H.; Li, H.S.; Wang, J.W.; Xiao, X.F. Study on Cu-Ni/MoO3-SiO2 catalyst for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol. Pet. Process. Petrochem. 2000, 6, 51–55. [Google Scholar]
- Zhong, S.H.; Li, H.S.; Wang, J.W.; Xiao, X.F. Cu-Ni/V2O5-SiO2 catalyst for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol. Acta Phys. Chim. Sin. 2000, 16, 226–231. [Google Scholar]
- Wu, X.L.; Meng, Y.Z.; Xiao, M.; Lu, Y.X. Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. J. Mol. Catal. A Chem. 2006, 249, 93–97. [Google Scholar] [CrossRef]
- Wang, X.J.; Xiao, M.; Wang, S.J.; Lu, Y.X.; Meng, Y.Z. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol using supported copper (Ni, V, O) catalyst with photo-assistance. J. Mol. Catal. A Chem. 2007, 278, 92–96. [Google Scholar] [CrossRef]
- Bian, J.; Xiao, M.; Wang, S.J.; Wang, X.J.; Lu, Y.X.; Meng, Y.Z. Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper-nickel/graphite bimetallic nanocomposite catalyst. Chem. Eng. J. 2009, 147, 287–296. [Google Scholar] [CrossRef]
- Bian, J.; Xiao, M.; Wang, S.J.; Lu, Y.X.; Meng, Y.Z. Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu-Ni/AC catalysts. Catal. Commun. 2009, 10, 1142–1145. [Google Scholar] [CrossRef]
- Chen, H.L.; Wang, S.J.; Xiao, M.; Han, D.M.; Lu, Y.X.; Meng, Y.Z. Direct synthesis of dimethyl carbonate from CO and CHOH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chin. J. Chem. Eng. 2012, 20, 906–913. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Wang, S.J.; Xiao, M.; Han, D.M.; Lu, Y.X.; Meng, Y.Z. Formation of dimethyl carbonate on nature clay supported bimetallic Cu–Ni catalysts. J. Clean. Prod. 2014, 103, 925–933. [Google Scholar] [CrossRef]
- Zhang, M.; Alferov, K.A.; Xiao, M.; Han, D.M.; Wang, S.J.; Meng, Y.Z. Continuous dimethyl carbonate synthesis from CO2 and methanol using Cu-Ni@VSiO as catalyst synthesized by a novel sulfuration method. Catalysts 2018, 8, 142. [Google Scholar] [CrossRef]
- Fu, Z.W.; Yu, Y.H.; Li, Z.; Xiao, M.; Han, D.M.; Wang, S.J.; Meng, Y.Z. Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl carbonate: Catalytic performance and role of oxygen vacancy. Catalysts 2018, 8, 164. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, M.; Wang, S.J.; Han, D.M.; Lu, Y.X.; Meng, Y.Z. Porous diatomite-immobilized Cu–Ni bimetallic nanocatalysts for direct synthesis of dimethyl carbonate. J. Nanomater. 2012, 1–8. [Google Scholar] [CrossRef]
- Bonzel, H.P.; Bradshaw, A.M.; Ertl, G. Physics and Chemistry of Alkali Metal Adsorption; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Kazi, A.M.; Chen, B.; Goodwin, J.G.; Marcelin, G.; Rodriguez, N.; Baker, T.K. Li+ promotion of Pd/SiO2: The effect on hydrogenation, hydrogenolysis, and methanol synthesis. J. Catal. 1995, 157, 1–13. [Google Scholar] [CrossRef]
- Evin, H.N.; Jacobs, G.; Ruiz-Martinez, J.; Thomas, G.A.; Davis, B.H. Low temperaturewater-gas shift: Alkali doping to facilitate formate C-H bond cleaving over Pt/ceria catalysts—An optimization problem. Catal. Lett. 2008, 120, 166–178. [Google Scholar] [CrossRef]
- Pigos, J.M.; Brooks, C.J.; Jacobs, G.; Davis, B.H. Low temperature water-gas shift: The effect of alkali doping on the C-H bond of formate over Pt/ZrO2 catalysts. Appl. Catal. A Gen. 2007, 328, 14–26. [Google Scholar] [CrossRef]
- Graetsch, H.; Gies, H.; Topalovic, I. NMR, XRD and IR study on microcrystalline opals. Phys. Chem. Miner. 1994, 21, 166–175. [Google Scholar] [CrossRef]
Samples | T a (°C) | Amount b (μmol gcat −1) | Total c |
---|---|---|---|
Diatomite | — | — | — |
15%(2CuO-NiO)/diatomite | 157 | 5.45 | 5.45 |
15%(2CuO-NiO)-2%Li2O/diatomite | 162 | 7.61 | 7.61 |
15%(2CuO-NiO)-2%Na2O/diatomite | 164 | 8.39 | 8.39 |
15%(2CuO-NiO)-2%K2O/diatomite | 138 | 4.75 | 14.54 |
206 | 9.79 | ||
15%(2CuO-NiO)-2%Cs2O/diatomite | 223 | 9.71 | 9.71 |
15%(2CuO-NiO)-0.5%K2O/diatomite | 133 | 3.75 | 11.84 |
199 | 8.09 | ||
15%(2CuO-NiO)-5%K2O/diatomite | 171 | 4.40 | 12.25 |
231 | 7.85 |
Samples | T a (°C) | Amount b (μmol gcat −1) | Total c |
---|---|---|---|
diatomite | — | — | — |
15%(2CuO-NiO)/diatomite | 134 | 1.87 | 5.64 |
186 | 2.36 | ||
243 | 1.41 | ||
15%(2CuO-NiO)-2%Li2O/diatomite | 200 | 6.60 | 6.60 |
15%(2CuO-NiO)-2%Na2O/diatomite | 202 | 9.96 | 9.96 |
15%(2CuO-NiO)-2%K2O/diatomite | 207 | 11.3 | 11.3 |
15%(2CuO-NiO)-2%Cs2O/diatomite | 185 | 11.2 | 11.2 |
Catalyst a | Methanol Conversion (mol %) b,c | DMC Selectivity (mol %) c | DMC Yield (mol %) c |
---|---|---|---|
15%(2Cu-Ni)/diatomite | 6.50 | 91.2 | 5.93 |
15%(2Cu-Ni)-0.5%Li2O/diatomite | 6.11 | 88.2 | 5.39 |
15%(2Cu-Ni)-2%Li2O/diatomite | 5.68 | 83.2 | 4.73 |
15%(2Cu-Ni)-5%Li2O/diatomite | 2.77 | 85.1 | 2.36 |
15%(2Cu-Ni)-0.5%Na2O/diatomite | 6.68 | 83.3 | 5.56 |
15%(2Cu-Ni)-2%Na2O/diatomite | 7.02 | 84.5 | 5.93 |
15%(2Cu-Ni)-5%Na2O/diatomite | 3.97 | 81.7 | 3.24 |
15%(2Cu-Ni)-0.5%K2O/diatomite | 6.81 | 89.2 | 6.08 |
15%(2Cu-Ni)-2%K2O/diatomite | 7.55 | 90.3 | 6.82 |
15%(2Cu-Ni)-5%K2O/diatomite | 3.68 | 84.8 | 3.12 |
15%(2Cu-Ni)-0.5%Cs2O/diatomite | 7.17 | 90.7 | 6.50 |
15%(2Cu-Ni)-2%Cs2O/diatomite | 9.22 | 85.9 | 7.92 |
15%(2Cu-Ni)-5%Cs2O/diatomite | 5.65 | 80.4 | 4.54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Chen, Y.; Wang, S.; Xiao, M.; Lu, Y.; Meng, Y. Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate. Catalysts 2018, 8, 302. https://doi.org/10.3390/catal8080302
Han D, Chen Y, Wang S, Xiao M, Lu Y, Meng Y. Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate. Catalysts. 2018; 8(8):302. https://doi.org/10.3390/catal8080302
Chicago/Turabian StyleHan, Dongmei, Yong Chen, Shuanjin Wang, Min Xiao, Yixin Lu, and Yuezhong Meng. 2018. "Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate" Catalysts 8, no. 8: 302. https://doi.org/10.3390/catal8080302
APA StyleHan, D., Chen, Y., Wang, S., Xiao, M., Lu, Y., & Meng, Y. (2018). Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate. Catalysts, 8(8), 302. https://doi.org/10.3390/catal8080302