V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review
Abstract
:1. Introduction: Main Applications of Vanadium Oxide-Based Materials in Catalysis
2. Removal of NOx
- (A)
- NO + NO2 + NH3 → N2 + H2O “fast-SCR”
- (B)
- NO + NH3 + O2 → N2 + H2O “standard SCR”
3. Removal of H2S
4. Removal of N-Containing Organic Pollutants
5. Total Oxidation Process
6. Photocatalysis
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mars, P.; van Krevelen, D.W. Oxidations Carried Out by Means of Vanadium Oxide Catalysts. Spec. Suppl. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Doornkamp, C.; Ponec, V. The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 2000, 162, 19–32. [Google Scholar] [CrossRef]
- Haber, J. Fifty years of my romance with vanadium oxide catalysts. Catal. Today 2009, 142, 100–113. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O. Supported, Bulk and bulk-supported vanadium oxide Catalysts: A short review with an historical perspective. Catal. Today 2017, 285, 226–233. [Google Scholar] [CrossRef]
- Guliants, V.V.; Benziger, J.B.; Sundaresan, S.; Wachs, I.E.; Jehng, J.-M.; Roberts, J.E. The effect of phase composition of model VPO catalysts for partial oxidation of n-butane. Catal. Today 1996, 28, 275–295. [Google Scholar] [CrossRef]
- Centi, G. Vanadyl Pyrophosphate—A critical overview. Catal. Today 1993, 16, 5–26. [Google Scholar] [CrossRef]
- Hutchings, G.J. Effect of promoters and reactant concentration on the selective oxidation of n-butane to maleic anhydride using vanadium phosphorus oxide catalysts. Appl. Catal. 1991, 72, 1–32. [Google Scholar] [CrossRef]
- Carreon, M.A.; Guliants, V.V.; Guerrero-Perez, M.O.; Bañares, M.A. Phase transformations in mesostructured VPO/surfactant composites. Microporous Mesoporous Mater. 2004, 71, 57–63. [Google Scholar] [CrossRef]
- Berenguer, R.; Fornells, J.; García-Mateos, F.J.; Guerrero-Perez, M.O.; Rodriguez-Mirasol, J.; Cordero, T. Novel Synthesis Mehod of porous VPO Catalysts with fibrous structure by electrospinning. Catal. Today 2016, 277, 266–273. [Google Scholar] [CrossRef]
- Nilsson, R.; Lindblad, T.; Andersson, A. Ammoxidation of Propane over Antimony Vanadium-Oxide Catalysts. J. Catal. 1994, 148, 501–513. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S.; Trifiro, F. V Sb-oxide catalysts for the ammoxidation of propane. Appl. Catal. A Gen. 1997, 157, 143–172. [Google Scholar] [CrossRef]
- Catani, R.; Centi, G.; Trifiro, F.; Grasselli, R.K. Kinetics and reaction network in propane ammoxidation to acrylonitrile over vanadium-antimony-aluminum based mixed oxides. Ind. Eng. Chem. Res. 1992, 31, 107–119. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Bañares, M.A. Operando Raman study of alumina-supported Sb-V-O catalyst during propane ammoxidation to acrylonitrile with on line activity measurement. Chem. Commun. 2002, 12, 1292–1293. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Fierro, J.L.G.; Vicente, M.A.; Bañares, M.A. Effect of Sb/V ratio and of Sb+V coverage on the molecular structure and activity of alumina-supported Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile. J. Catal. 2002, 206, 339–348. [Google Scholar] [CrossRef]
- García-González, E.; López-Nieto, J.M.; Botella, P.; González-Calbet, J.M. On the nature and structure of a new MoVTeO crystalline phase. Chem. Mater. 2002, 14, 4416–4421. [Google Scholar] [CrossRef]
- Vitry, D.; Dubois, J.-L.; Ueda, W. Strategy in achieving propane selective oxidation over multi-functional Mo-based oxide catalysts. J. Mol. Catal. A Chem. 2004, 220, 67–76. [Google Scholar] [CrossRef]
- Guliants, V.V.; Bhandari, R.; Al-Saeedi, J.N.; Vasudevan, V.K.; Soman, R.S.; Guerrero-Pérez, O.; Bañares, M.A. Bulk mixed Mo-V-Te-O Catalysts for propane oxidation to acrylic acid. Appl. Catal. A Gen. 2004, 274, 123–132. [Google Scholar] [CrossRef]
- Vitry, D.; Morikawa, V.; Dubois, J.L.; Ueda, W. Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid. Appl. Catal. A Gen. 2003, 251, 411–424. [Google Scholar] [CrossRef]
- López-Medina, R.; Fierro, J.L.G.; Guerrero-Pérez, M.O.; Bañares, M.A. Structural changes occurring at the surface of alumina-supported nanoscaled Mo–V–Nb–(Te)–O catalytic system during the selective oxidation of propane to acrylic acid. Appl. Catal. A Gen. 2011, 406, 34–42. [Google Scholar] [CrossRef]
- López-Medina, R.; Sobczak, I.; Golinska-Mazwa, H.; Ziolek, M.; Bañares, M.A.; Guerrero-Pérez, M.O. Spectroscopic surface characterization of MoVNbTe nanostructured catalysts for the partial oxidation of propane. Catal. Today 2012, 187, 195–200. [Google Scholar] [CrossRef]
- Efendiev, A.D.; Tretyakov, V.F.; Rozovskii, A.Y.; Shakhtakhtinskii, T.N. Modifying action of wáter on vanadium-phosphoric catalyst. Kinet. Catal. 1990, 31, 446–447. [Google Scholar]
- Rapolu, C.S.R.; Panja, K.R. Highly selective V-P-O/Al2O3 catalysts in the ammoxidation of toluene to benzonitrile. J. Chem. Soc. Chem. Commun. 1993, 14, 1175–1176. [Google Scholar] [CrossRef]
- Centi, G. Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics. Appl. Catal. A Gen. 1996, 147, 267–298. [Google Scholar] [CrossRef]
- Parmaliana, A.; Frusteri, F.; Mezzapica, A.; Scurrell, M.S.; Giordano, N. Novel high activity catalyst for partial oxidation of Methane to formaldehyde. J. Chem. Soc. Chem. Commun. 1993, 9, 751–753. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Huang, K.-T.; Wan, B.-Z. Ethane Oxydehydrogenation over Supported Vanadium Oxides. Ind. Eng. Chem. Res. 1994, 33, 2066–2072. [Google Scholar] [CrossRef]
- Chieregato, A.; López Nieto, J.M.; Cavani, F. Mixed-oxide Catalysts with vanadium as the key element for gas-phase reactions. Coord. Chem. Rev. 2015, 301–302, 3–23. [Google Scholar] [CrossRef]
- Carrero, C.A.; Schloegl, R.; Wachs, I.E.; Schomaecker, R. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal. 2014, 4, 3357–3380. [Google Scholar] [CrossRef]
- Wachs, I.E. Catalysis science of supported vanadium oxide Catalysts. Dalton Trans. 2013, 42, 11762–11769. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ferguson, G.A.; Cheng, L.; Zygmunt, S.A.; Stair, P.C.; Curtiss, L.A. Structure-specific reactivity of alumina-supported monomeric vanadium oxide species. J. Phys. Chem. C 2012, 116, 2927–2932. [Google Scholar] [CrossRef]
- Fornés, V.; López, C.; López, H.H.; Martínez, A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of Methane to formaldehyde. Appl. Catal. A Gen. 2003, 249, 345–354. [Google Scholar] [CrossRef]
- Beale, A.M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C.H.F.; Szanyi, J. Recent advances in automotive Catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, W.F.; Teraoka, Y.; Kagawa, S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NO(x) and diesel soot particulate. Appl. Catal. B 1998, 16, 149–154. [Google Scholar] [CrossRef]
- Fickel, D.W.; D’Addio, E.; Lauterbach, J.A.; Lobo, R.F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B 2011, 102, 441–448. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B 2004, 51, 93–106. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo LAndreini, A.; Moulijn, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Xu, J.; Chen, G.; Guo, F.; Xie, J. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: Review. Chem. Eng. J. 2018, 353, 507–518. [Google Scholar] [CrossRef]
- Casagrande, L.; Lietti, L.; Nova, I.; Forzatti, P.; Baiker, A. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: Reactivity and redox behavior. Appl. Catal. B 1999, 22, 63–77. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, X.; Wachs, I.E. Comparative Study of Bulk and Supported V−Mo−Te−Nb−O Mixed Metal Oxide Catalysts for Oxidative Dehydrogenation of Propane to Propylene. J. Phys. Chem. B 2003, 107, 6333–6342. [Google Scholar] [CrossRef]
- Yang, S.; Iglesia, E.; Bell, A.T. Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Catalytic Function. J. Phys. Chem. B 2005, 109, 8987–9000. [Google Scholar] [CrossRef] [PubMed]
- Bañares, M.A.; Khatib, S.J. Structure–activity relationships in alumina-supported molybdena–vanadia catalysts for propane oxidative dehydrogenation. Catal. Today 2004, 96, 251–257. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Al-Saeedi, J.N.; Guliants, V.V.; Bañares, M.A. Catalytic properties of mixed Mo-V-Sb-Nb-O oxides catalysts for the ammoxidation of propane to acrylonitrile. Appl. Catal. A 2004, 260, 93–99. [Google Scholar] [CrossRef]
- Watanabe, H.; Koyasu, Y. New synthesis route for Mo–V–Nb–Te mixed oxides catalyst for propane ammoxidation. Appl. Catal. A 2000, 194–195, 479–485. [Google Scholar] [CrossRef]
- Vaarkamp, M.; Ushikubo, T. Limitations of V–Sb–W and Mo–V–Nb–Te mixed oxides in catalyzing propane ammoxidation. Appl. Catal A 1998, 174, 99–107. [Google Scholar] [CrossRef]
- Ueda, W.; Vitry, D.; Katou, T. Structural organization of catalytic functions in Mo-based oxides for propane selective oxidation. Catal. Today 2004, 96, 235–240. [Google Scholar] [CrossRef]
- Al-Saeedi, J.N.; Guliants, V.V.; Guerrero-Pérez, M.O.; Bañares, M.A. Bulk structure and catalytic properties of mixed Mo–V–Sb–Nb oxides for selective propane oxidation to acrylic acid. J. Catal. 2003, 215, 108–115. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Alemany, L.J. Alumina-supported Mo-V-Te-O Catalysts for the ammoxidation of propane to acrylonitrile. Appl. Catal. A 2008, 341, 119–126. [Google Scholar] [CrossRef]
- Lietti, L.; Forzatti, P.; Bregani, F. Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 De-NOx catalysts: Relevance of the vanadium-tungsten interaction on the catalytic activity. Ind. Eng. Chem. Res. 1996, 35, 3884–3892. [Google Scholar] [CrossRef]
- Chen, J.P.; Yang, R.T. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. A 1992, 80, 135–148. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q. Surface characterization studies on the interaction of V2O5-WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J. Sol. Sta. Chem. 2015, 221, 49–56. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q. Promotional effect of WO3 on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3. J. Mol. Catal. A 2013, 373, 108–113. [Google Scholar] [CrossRef]
- Nova, I.; Ciardelli, C.; Tronconi, E.; Chatterjee, D.; Bandl-Konrad, B. NH2-NO/NO2 chemistry over V-based Catalysts and its role in the mechanism of the Fast SCR reaction. Catal. Today 2006, 114, 3–12. [Google Scholar] [CrossRef]
- Tronconi, E.; Nova ICiardelli, C.; Chatterjee, D.; Weibel, M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J. Catal. 2007, 245, 1–10. [Google Scholar] [CrossRef]
- Koebel, M.; Madia, G.; Raimondi, F.; Wokaun, A. Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction. J. Catal. 2002, 209, 159–165. [Google Scholar] [CrossRef]
- Amiridis, M.D.; Duevel, R.V.; Wachs, I.E. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Appl. Catal. B 1999, 20, 111–122. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Bañares, M.A. Operando Raman–GC studies of alumina-supported Sb-V-O catalysts and role of the preparation method. Catal. Today 2004, 96, 265–272. [Google Scholar] [CrossRef]
- Lietti, L.; Forzatti, P.; Ramis, G.; Busca, G.; Bregani, F. Potassium doping of vanadia/titania de-NOxing catalysts: Surface characterization and reactivity study. Appl. Catal. B 1993, 3, 13–35. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2011, 170, 531–537. [Google Scholar] [CrossRef]
- Kong, M.; Liu, Q.; Zhou, J.; Jiang, L.; Tian, Y.; Yang, J.; Ren, S. Effect of different potassium species on the deactivation of V2O5-WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem. Eng. J. 2018, 348, 637–643. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Rosas, J.M.; López-Medina, R.; Bañares, M.A.; Rodríguez-Mirasol, J.; Cordero, T. On the Nature of Surface Vanadium Oxide Species on Carbons. J. Phys. Chem. C 2012, 116, 20396–20403. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Z.; Liu, S.; Niu, H. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures. Appl. Catal. B 1999, 23, L229–L233. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Calvillo, L.; Lázaro, M.J.; Moliner, R. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature: Effect of pore structure. Appl. Catal. B 2004, 50, 235–242. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Calvillo, L.; Lázaro, M.J.; Moliner, R. Study of configuration and coating thickness of vanadium on carbon-coated monoliths in the SCR of NO at low temperature. Ind. Eng. Chem. Res. 2004, 43, 4073–4079. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Monzón, A.; Lázaro, M.J.; Moliner, R. Promotion by a second metal or SO2 over vanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at low temperature. Catal. Today 2005, 102–103, 177–182. [Google Scholar]
- García-Bordejé, E.; Lázaro, M.J.; Moliner, R.; Galindo, J.F.; Sotres, J.; Baró, A.M. Structure of vanadium oxide supported on mesoporous carbon-coated monoliths and relationship with its catalytic performance in the SCR of NO at low temperatures. J. Catal. 2004, 223, 395–403. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.; Fierro, J.L.G. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. J. Catal. 2005, 233, 166–175. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2 traces in the gas feed. Appl. Catal. B 2006, 66, 281–287. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. Promotional effect of ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C 2009, 113, 21177–21184. [Google Scholar] [CrossRef]
- Guan, B.; Lin, H.; Zhu, L.; Huang, Z. Selective catalytic reduction of NOx with NH3 over Mn, Ce Substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J. Phys. Chem. C 2011, 115, 12850–12863. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Li, J.; Zhu, J.; Ma, L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl. Catal. B 2014, 158–159, 11–19. [Google Scholar] [CrossRef]
- Davydov, A.A.; Marshneva, V.I.; Shepotko, M.L. Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide I. The comparison study of the catalytic activity. Mechanism of the interactions between H2S and SO2 on some oxides. Appl. Catal. A 2003, 244, 93–100. [Google Scholar] [CrossRef]
- Soriano, M.D.; Jiménez-Jiménez, J.; Concepción, P.; Jiménez-López, A.; Rodríguez-Castellón, E.; Nieto, J.M.L. Selective oxidation of H2S to sulfuro ver vanadia supported on mesoporous zirconium phosphate heterostructure. Appl. Catal. B 2009, 92, 271–279. [Google Scholar] [CrossRef]
- León, M.; Jiménez-Jiménez, J.; Jiménez-López, A.; Rodríguez-Castellón, E.; Soriano, D.; Nieto, J.M.L. Vanadium oxide-porous phosphate heterostructure Catalysts for the selective oxidation of H2S to sulphur. Solid State Sci. 2010, 12, 996–1001. [Google Scholar] [CrossRef]
- Holgado, J.P.; Soriano, M.D.; Jiménez-Jiménez, J.; Concepción, P.; Jiménez-López, A.; Caballero, A.; Rodríguez-Castellón, E.; Nieto, J.M.L. Operando XAS and Raman study on the structure of a supported vanadium oxide catalyst during the oxidation of H2S to sulphur. Catal. Today 2010, 155, 296–301. [Google Scholar] [CrossRef]
- Pongthawornsakun, B.; Phatyenchuen, S.; Panpranot, J.; Praserthdam, P. The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts. J. Environ. Chem. Eng. 2018, 6, 1414–1423. [Google Scholar] [CrossRef]
- Palma, V.; Barba, D.; Ciambelli, P. H2S removal in biogas by direct catalytic oxidation to sulphur on V2O5/CeO2 catalysts. Chem. Eng. Trans. 2012, 29, 631–636. [Google Scholar]
- Palma, V.; Barba, D. Low temperature catalytic oxidation of H2S over V2O5/CeO2 catalysts. Int. J. Hydrogen Energy 2014, 39, 21524–21530. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Soriano, M.D.; Natoli, A.; Rodríguez-Castellón, E.; López Nieto, J.M. Selective oxidation of hydrogen sulfide to sulfur using vanadium oxide supported on porous clay heterostructures (PCHs) formed by pillars silica, silica-zirconia or silica-titania. Materials 2018, 11, 1562. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.D.; Vidal-Moya, A.; Rodríguez-Castellón, E.; Melo, F.V.; Blasco, M.T.; Nieto, J.M.L. Partial oxidation of hydrogen sulfide to sulfur over vanadium oxides bronzes. Catal. Today 2016, 259, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Haber, J.; Janas, J.; Krysciak-Czerwenka, J.; Machej, T.; Sadowska, H.; Hellden, S. Total oxidation of nitrogen-containing organic compounds to N2, CO2 and H2O. Appl. Catal. A 2002, 229, 23–34. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Janas, J.; Machej, T.; Haber, J.; Lewandowska, A.E.; Fierro, J.L.G.; Bañares, M.A. Selective destruction of nitrogen-contaning organic volatile compounds over Sb-V-O catalysts. Appl. Catal. B 2007, 71, 85–93. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Peña, M.A.; Fierro, J.L.G.; Bañares, M.A. A study about the propane ammoxidation to acrylonitrile with an alumina-supported Sb-V-O catalyst. Ind. End. Chem. Res. 2006, 45, 4537–4543. [Google Scholar] [CrossRef]
- Rojas, E.; Calatayud MGuerrero-Pérez, M.O.; Bañares, M.A. Correlation between Theoretical and Experimental Investigations of the Ammonia Adsorption Process on the (110)-VSbO4 Surface. Catal. Today 2010, 158, 178–185. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Bañares, M.A. Operando Raman-GC study of supported alumina Sb and V based Catalysts: Effect of Sb/V molar ratio and total Sb+V coverage in the structure of catalysts during propane ammoxidation. J. Phys. Chem. C 2007, 111, 1315–1322. [Google Scholar] [CrossRef]
- Guerrero-Pérez, M.O.; Kim, T.; Bañares, M.A.; Wachs, I.E. The Nature of Catalytic Active Sites for Sb-V-O mixed Metal Oxides. J. Phys. Chem. C 2008, 112, 16858–16863. [Google Scholar] [CrossRef]
- Spivey, J.J. Complete Catalytic Oxidation of Volatile Organics. Ind. Eng. Chem. Res. 1987, 26, 2165–2180. [Google Scholar] [CrossRef]
- Liotta, L. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Shahzad Kamal, M.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Weber, R.; Sakurai, T.; Hagenmaier, H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl. Catal. B 1999, 20, 249–256. [Google Scholar] [CrossRef]
- Jones, J.; Ross, J.R. The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catal. Today 1997, 35, 97–105. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Baker, J.P.; Amiridis, M.D. Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts. Catal. Today 1998, 40, 39–46. [Google Scholar] [CrossRef]
- Delaible, R.; Debecker, D.P.; Bertinchamps, F.; Gaigneaux, E.M. Revisiting the behaviour of vanadia-based catalysts in the abatement of (chloro)-aromatic pollutants: Towards an integrated understanding. Top. Catal. 2009, 52, 501–516. [Google Scholar] [CrossRef]
- Debecker, D.P.; Bouchmella, K.; Delaible, R.; Eloy, P.; Poleunis, C.; Bertrand, P.; Gaigneaux, E.M.; Mutin, P.H. One-step non-hydrolytic sol–gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Appl. Catal. B 2010, 94, 38–45. [Google Scholar] [CrossRef]
- Debecker, D.P.; Delaigle, R.; Bouchmella, K.; Eloy PGaigneaux, E.M.; Mutin, P.H. Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol–gel route. Catal. Today 2010, 157, 125–130. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Guangquan, L.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Yu, J.C.; Raymund, J.L.; Kwok, W.M. Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone. J. Phot. Phot. A 1997, 111, 199–203. [Google Scholar] [CrossRef]
- Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. Degradation of propanol diluted in wáter under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A Chem. 2002, 148, 257–261. [Google Scholar] [CrossRef]
- Wu, J.C.S.; Chen, C.H. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol. A Chem. 2004, 163, 509–515. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Gu, F.; Jiang, H.; Hu, Y.; Zhang, J. Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J. 2009, 151, 220–227. [Google Scholar] [CrossRef]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.S.; Stout, J.; Gole, J.L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Gu, D.-E.; Yang, B.-C.; Hu, Y.-D. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal. Commun. 2008, 9, 1472–1476. [Google Scholar] [CrossRef]
- Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 2018, 555, 47–74. [Google Scholar]
- Wang, Y.; Zhang, Z.; Zhu, Y.; Li, Z.; Vajtai, R.; Ci, L.; Ajayan, P.M. Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2008, 2, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Pérez, M.O. V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review. Catalysts 2018, 8, 564. https://doi.org/10.3390/catal8110564
Guerrero-Pérez MO. V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review. Catalysts. 2018; 8(11):564. https://doi.org/10.3390/catal8110564
Chicago/Turabian StyleGuerrero-Pérez, M. Olga. 2018. "V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review" Catalysts 8, no. 11: 564. https://doi.org/10.3390/catal8110564
APA StyleGuerrero-Pérez, M. O. (2018). V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review. Catalysts, 8(11), 564. https://doi.org/10.3390/catal8110564