Strongly Enhancing Photocatalytic Activity of TiO2 Thin Films by Multi-Heterojunction Technique
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, S.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglic, A.; Mozetic, M. Titanium Nanostructures for Biomedical Applications. Nanotechnology 2015, 26, 062002. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.B.; Peng, C.; You, J.J. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance. Therm. Spray Technol. 2017, 26, 1301–1307. [Google Scholar] [CrossRef]
- Wang, J.X.; Wang, L.T.; Fan, Y.B. Adverse Biological Effect of TiO2 and Hydroxyapatite Nanoparticles Used in Bone Repair and Replacement. Int. J. Mol. Sci. 2016, 17, 798. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Bonetta, S.; Motta, F.; Strini, A.; Carraro, E. Photocatalytic Bacterial Inactivation by TiO2-Coated Surfaces. AMB Express 2013, 3, 59. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic Antibacterial Performance of TiO2 and Ag-Doped TiO2 against S. Aureus. P. Aeruginosa and E. Coli. J. Nanotechnol. 2013, 4, 345–351. [Google Scholar]
- Yates, M.H.; Brook, L.A.; Ditta, I.B.; Evans, P.; Foster, A.H.; Sheel, W.D.; Steele, A. Photo-Induced Self–Cleaning and Biocidal Behviour of Titania and Copper Oxide Multilayers. J. Photochem. Photobiol. A 2008, 197, 197–205. [Google Scholar] [CrossRef]
- Zhang, L.; Dillert, R.; Bahnemann, D. Photoinduced Hydrophylicity and Self-Cleaning: Models and Reality. Energy Environ. Sci. 2012, 5, 7491–7507. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Cheng, H.-E.; Chen, C.-C. Morphological and Photoelectrochemical Properties of ALD TiO2 Films. J. Electrochem. Soc. 2008, 155, D604–D607. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, F.; Xu, W.; Cao, S.; Zhu, H. Recent Progress in Enhancing Photocatalytic Efficiency of TiO2-Based Materials. Appl. Catal. A 2015, 495, 131–140. [Google Scholar] [CrossRef]
- Sakata, T. Photocatalysis: Fundamentals and Applications; Serpone, N., Pelizzetti, E., Eds.; John Wiley & Sons: New York, NY, USA, 1989; p. 314. [Google Scholar]
- Yang, G.; Ding, H.; Feng, J.; Hao, Q.; Sun, S.; Ao, W.; Chen, D. Highly Performance Core-Shell TiO2(B)/anatase Homojunction Nanobelts with Active Cobalt phosphide Cocatalyst for Hydrogen Production. Sci. Rep. 2017, 7, 14594. [Google Scholar] [CrossRef] [PubMed]
- Preethi, L.K.; Antony, R.P.; Mathews, T.; Walczak, L.; Gopinath, C.S. A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting. Sci. Rep. 2017, 7, 14314. [Google Scholar] [CrossRef] [PubMed]
- Sorathiya, K.; Mishra, B.; Kalarikkal, A.; Reddy, K.P.; Gopinath, C.S.; Khushalani, D. Enhancement in Rate of Photocatalysis Upon Catalyst Recycling. Sci. Rep. 2016, 6, 35075. [Google Scholar] [CrossRef] [PubMed]
- Tugaoen, H.O.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Challenges in Photocatalytic Reduction of Nitrate as a Water Treatment Technology. Sci. Total Environ. 2017, 599, 1524–1551. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Liu, C.W.; Chan, Y.H.; Chang, T.Y.; Chen, B.C.; Hsi, H.C. Development of HCl-Treated Titania Nanotubes Photocatalysts for Dye Photodegradation and Low-Concentration Elemental Mercury Removal. Catal. Today 2017, 297, 113–123. [Google Scholar] [CrossRef]
- Chang, L.H.; Cho, C.P. Exploration of Silver Decoration Concentration to Enhance Photocatalytic Efficiency of Titanium Dioxide Photocatalysts. Solid State Sci. 2016, 62, 112–120. [Google Scholar] [CrossRef]
- Yu, J.C.C.; Nguyen, V.H.; Lasek, J.; Wu, J.C.S. Titania Nanosheet Photocatalysts with Dominantly Exposed (001) Reactive Facets for Photocatalytic NOx Abatement. Appl. Catal. B 2017, 219, 391–400. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is Anatase a Better Photocatalyst than Rutile?—Model Studies on Epitaxial TiO2 Films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Ghicov, A.; Hahn, R.; Tsuchiya, H.; Schmuki, P. Photoelectrochemical Properties of N-Doped Self-Organized Titania Nanotube Layers with Different Thicknesses. J. Mater. Res. 2006, 21, 2824–2828. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gu, D.; Zhu, L.Y.; Wang, B.H. Highly Ordered Fe3+/TiO2 Nanotube Arrays for Efficient Photocataltyic Degradation of Nitrobenzene. Appl. Surf. Sci. 2017, 420, 896–904. [Google Scholar] [CrossRef]
- Liu, C.-M.; Chen, C.; Cheng, H.-E. Ultraviolet Photoresponse of TiO2 Nanotube Arrays Fabricated by Atomic Layer Deposition. Electrochem. Solid-State Lett. 2011, 14, K33–K35. [Google Scholar] [CrossRef]
- Cheng, H.-E.; Lin, C.-Y.; Hsu, C.-M. Fabrication of SnO2-TiO2 Core-Shell Nanopillar-Array Films for Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2017, 396, 393–399. [Google Scholar] [CrossRef]
- Jia, L.; Qiu, J.C.; Du, L.Q.; Li, Z.; Liu, H.; Ge, S.H. TiO2 Nanorod Arrays as a Photocatalytic Coating Enhanced Antifungal and Antibacterial Efficiency of Ti Substrates. Nanomedicine 2017, 12, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Zhang, L.; Wang, Y.F.; Zhang, H.M.; Zhang, S.Q. Photoelectrocatalytic Activity of an Ordered and Vertically Aligned TiO2 Nanorod Array/BDD Heterojunction Electrode. Sci. Bull. 2017, 62, 619–625. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Fu, Y.; Wu, Y.F.; Zuo, T.Y. Lanthanum-Doped TiO2 Nanosheet Film with Highly Reactive {001} Facets and Its Enhanced Photocatalytic Activity. Eur. J. Inorg. Chem. 2016, 11, 1706–1711. [Google Scholar] [CrossRef]
- Nair, A.K.; JagadeeshBabu, P.E. TiO2 Nanosheet-Graphene Oxide Based Photocatalytic Hierarchical Membrane for Water Purification. Surf. Coat. Technol. 2017, 320, 259–262. [Google Scholar] [CrossRef]
- Wei, N.; Cui, H.Z.; Song, Q.; Zhang, L.Q.; Song, X.J.; Wang, K.; Zhang, Y.F.; Li, J.; Wen, J.; Tian, J. Ag2O Nanoparticle/TiO2 Nanobelt Heterostructures with Remarkable Photoresponse and Photocatalytic Properties under UV, Visible and Near-Infrared Irradiation. Appl. Catal. B 2016, 198, 83–90. [Google Scholar] [CrossRef]
- Lai, L.L.; Wu, J.M. A Facile Solution Approach to W,N Co-doped TiO2 Nanobelt Thin Films with High Photocatalytic Activity. J. Mater. Chem. A 2015, 3, 15863–15868. [Google Scholar] [CrossRef]
- Trabelsi, K.; Hajjaji, A.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Enhancing the Photoelectrochemical Response of TiO2 Nanotubes through Their Nanodecoration by Pulsed-Laser-Deposited Ag Nanoparticles. J. Appl. Phys. 2017, 122, 064503. [Google Scholar] [CrossRef]
- Shuang, S.; Lv, R.T.; Xie, Z.; Zhang, Z.J. Surface Plasmon Enhanced Photocatalysis of Au/Pt-Decorated TiO2 Nanopillar Arrays. Sci. Rep. 2016, 6, 26670. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.Y.; Xue, D.; Yuan, X.L.; Zheng, B.; Jia, M.J.; Zhang, W.X. Acid-Treated TiO2 Nanobelt Supported Platinum Nanoparticles for the Catalytic Oxidation of Formaldehyde at Ambient Conditions. Appl. Surf. Sci. 2017, 411, 105–112. [Google Scholar] [CrossRef]
- Chen, J.-J.; Wang, W.-K.; Li, W.-W.; Pei, D.-N.; Yu, H.-Q. Roles of Crystal Surface in Pt-Loaded Titania for Photocatalytic Conversion of Organic Pollutants: A First-Principle Theoretical Calculation. ACS Appl. Mater. Interfaces 2015, 7, 12671–12678. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.M.; Ghayeb, Y. Photoinduced Deposition of Gold Nanoparticles on TiO2-WO3 Nanotube Films as Efficient Photoanodes for Solar Water Splitting. Appl. Phys. A 2016, 122, 620. [Google Scholar] [CrossRef]
- Marelli, M.; Evangelisti, C.; Diamanti, M.V.; Dal Santo, V.; Pedeferri, M.P.; Bianchi, C.L.; Schiavi, L.; Strini, A. TiO2 Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 31051–31058. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Liu, X.H. Preparation of Silver Nanoparticle Loaded Mesoporous TiO2 and Its Photocatalytic Property. J. Inorg. Mater. 2016, 31, 555–560. [Google Scholar]
- Cheng, H.-E.; Hsu, C.-M.; Chen, Y.-C. Substrate Materials and Deposition Temperature Dependent Growth Characteristics and Photocatalytic Properties of ALD TiO2 Films. J. Electrochem. Soc. 2009, 156, D275–278. [Google Scholar] [CrossRef]
- 39. In CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2008; pp. 12–114.
- Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films. Chem. Mater. 2002, 14, 4714–4720. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Schoonen, M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Ganose, A.M.; Scanlon, D.O. Band Gap and Work Function Tailoring of SnO2 for Improved Transparent Conducting Ability in Photovoltaics. J. Mater. Chem. C 2016, 4, 1467–1475. [Google Scholar] [CrossRef]
- Lamberti, A.; Chiodoni, A.; Shahzad, N.; Bianco, S.; Quaglio, M.; Pirri, C.F. Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes exploiting Water-Vapor Treatment. Sci. Rep. 2015, 5, 7808. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, H.; Taghavinia, N.; Alamdari, E.K. Self Cleaning TiO2 Coating on Polycarbonate: Surface Treatment, Photocatalytic and Nanomechanical Properties. Surf. Coat. Technol. 2010, 204, 1562–1568. [Google Scholar] [CrossRef]
Underlying Materials | Blank Glass | Ni/Ti Coated Glass | SnO2 Coated Glass | SnO2/Ni/Ti Coated Glass | ||||
---|---|---|---|---|---|---|---|---|
TiO2 deposition temperature (°C) | 250 | 350 | 250 | 350 | 250 | 350 | 250 | 350 |
Ra of deposited TiO2 film (nm) | 5.1 | 8.2 | 2.4 | 3.0 | 3.4 | 5.2 | 6.5 | 8.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.-E.; Hung, C.-H.; Yu, I.-S.; Yang, Z.-P. Strongly Enhancing Photocatalytic Activity of TiO2 Thin Films by Multi-Heterojunction Technique. Catalysts 2018, 8, 440. https://doi.org/10.3390/catal8100440
Cheng H-E, Hung C-H, Yu I-S, Yang Z-P. Strongly Enhancing Photocatalytic Activity of TiO2 Thin Films by Multi-Heterojunction Technique. Catalysts. 2018; 8(10):440. https://doi.org/10.3390/catal8100440
Chicago/Turabian StyleCheng, Hsyi-En, Chi-Hsiu Hung, Ing-Song Yu, and Zu-Po Yang. 2018. "Strongly Enhancing Photocatalytic Activity of TiO2 Thin Films by Multi-Heterojunction Technique" Catalysts 8, no. 10: 440. https://doi.org/10.3390/catal8100440
APA StyleCheng, H.-E., Hung, C.-H., Yu, I.-S., & Yang, Z.-P. (2018). Strongly Enhancing Photocatalytic Activity of TiO2 Thin Films by Multi-Heterojunction Technique. Catalysts, 8(10), 440. https://doi.org/10.3390/catal8100440