Next Article in Journal
Is Selective Heating of the Sulfonic Acid Catalyst AC-SO3H by Microwave Radiation Crucial in the Acid Hydrolysis of Cellulose to Glucose in Aqueous Media?
Next Article in Special Issue
Nature and Location of Carbonaceous Species in a Composite HZSM-5 Zeolite Catalyst during the Conversion of Dimethyl Ether into Light Olefins
Previous Article in Journal
Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study
Previous Article in Special Issue
Mesoporous ZSM-5 Zeolites in Acid Catalysis: Top-Down vs. Bottom-Up Approach
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle

Functionalization of SSZ-13 and Fe-Beta with Copper by NH3 and NO Facilitated Solid-State Ion-Exchange

Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
Author to whom correspondence should be addressed.
Catalysts 2017, 7(8), 232;
Received: 7 July 2017 / Revised: 24 July 2017 / Accepted: 4 August 2017 / Published: 8 August 2017
(This article belongs to the Special Issue Zeolites and Catalysis)
PDF [1982 KB, uploaded 16 August 2017]


We show that functionalization of SSZ-13 (CHA) and Fe-beta (*BEA) with copper using a recently reported solid-state ion-exchange method, facilitated by NH 3 and nitrogen oxides (NO), is a viable route to prepare Cu-SSZ-13 and (Cu + Fe)-beta catalysts, starting from H-SSZ-13 and Fe-beta, respectively. The physicochemical properties of the prepared catalysts are characterized by XRD, UV-Vis-spectroscopy and STEM-EDS, confirming that copper originally present in the physical mixture of CuO and H-SSZ-13, and CuO and Fe-beta, is inserted into the micropores of SSZ-13 and Fe-beta, respectively. Activity measurements in gas-flow reactor show that the samples are active for NO reduction by NH 3 -SCR over a broad temperature range, i.e., 150–500 C. For the Cu-SSZ-13 catalysts, which have a copper loading range of 0.5–4 wt. %, the sample prepared from the physical mixture with a CuO/SSZ-13 ratio corresponding to 2 wt. % Cu is the most active catalyst for NH 3 -SCR under the present reaction conditions. Furthermore, the (Cu + Fe)-beta catalyst shows higher NH 3 -SCR activity over a broader temperature range and especially at low temperature as compared to the Fe-beta and Cu-beta counterparts. The results encourage further elaboration on sequential ion-exchange procedures for bimetallic functionalization of zeolites. View Full-Text
Keywords: solid-state ion-exchange; copper; iron; zeolite; CHA; BEA; NH3-SCR; NOx-reduction solid-state ion-exchange; copper; iron; zeolite; CHA; BEA; NH3-SCR; NOx-reduction

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Shishkin, A.; Shwan, S.; Pingel, T.N.; Olsson, E.; Clemens, A.; Carlsson, P.-A.; Härelind, H.; Skoglundh, M. Functionalization of SSZ-13 and Fe-Beta with Copper by NH3 and NO Facilitated Solid-State Ion-Exchange. Catalysts 2017, 7, 232.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top