Concept of Vaporized Urea Dosing in Selective Catalytic Reduction
Abstract
:1. Introduction
2. SCR Chemistry
3. Results and Discussion
3.1. Steady-State Engine Operation
3.2. Transient Engine Operation
3.3. Practical Implementation
4. Concept Description
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, L.; Franco, V.; Campestrini, A.; German, J.; Mock, P. NOx Control Technologies for Euro 6 Diesel Passenger Cars; ICCT, White Paper: Washington, DC, USA, 2015. [Google Scholar]
- Brzezanski, M.; Sala, R. In-service problems of selective catalytic reduction systems for reduction of nitrogen oxides. Combus. Engines 2013, 154, 969–976. [Google Scholar]
- Brzezanski, M.; Sala, R. A study on the indirect urea dosing method in the Selective Catalytic Reduction system. In Proceedings of the Scientific Conference on Automotive Vehicles and Combustion Engines, Materials Science and Engineering, (KONMOT 2016), Krakow, Poland, 22–26 September 2016; Volume 148. [Google Scholar]
- Bielaczyc, P.; Woodburn, J. Current directions in LD powertrain technology in response to stringent exhaust emissions and fuel efficiency requirements. Combus. Engines 2016, 166, 62–75. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J.; Bielaczyc, P.; Woodburn, J. Analysis of Emission Factors in RDE Tests as Well as in NEDC and WLTC Chassis Dynamometer Tests; No. 2016-01-0980; SAE Technical Paper: Washington, DC, USA, 2016. [Google Scholar]
- European Environment Agency (EEA). Exceedance of Air Quality Limit Values in Urban Areas; European Environment Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- Yang, L.; Franco, V.; Mock, P.; Kolke, R.; Zhang, S.; Wu, Y.; German, J. Experimental assessment of NOx emissions from 73 Euro 6 diesel passenger cars. Environ. Sci. Technol. 2015, 49, e14409–e14415. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T. Vehicular Emissions in Review. SAE Int. J. Engines 2016, 9, 1258–1275. [Google Scholar] [CrossRef]
- Maunula, T. NOx Reduction with the Combinations on LNT and SCR in Diesel Applications; No. 2013-24-0161; SAE Technical Paper: Washington, DC, USA, 2013. [Google Scholar]
- Chi, J. Control Challenges for Optimal NOx Conversion Efficiency from SCR Aftertreatment Systems; No. 2009-01-0905; SAE Technical Paper: Washington, DC, USA, 2009. [Google Scholar]
- Marotta, A.; Pavlovic, J.; Ciuffo, B.; Serra, S.; Fontaras, G. Gaseous emissions from Light-Duty Vehicles: Moving from NEDC to the new WLTP test procedure. Environ. Sci. Technol. 2015, 49, 8315–8322. [Google Scholar] [CrossRef] [PubMed]
- Sala, R. Wpływ Sposobu Dozowania Roztworu Mocznika na Sprawność Selektywnej Redukcji Katalitycznej (The Influence of the Urea Dosing Method on the Efficiency of the Selective Catalytic Reduction Process). Ph.D. Thesis, Cracow University of Technology, Cracow, Poland, 2014. [Google Scholar]
- Bernhard, A.M.; Czekaj, I.; Elsener, M.; Wokaun, A.; Kröcher, O. Evaporation of Urea at Atmospheric Pressure. J. Phys. Chem. A 2011, 115, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Kröcher, O.; Elsener, M.; Jacob, E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas. Appl. Catal. B 2009, 88, 66–82. [Google Scholar] [CrossRef]
- Birkhold, F.; Meingast, U.; Wassermann, P.; Deutschmann, O. Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl. Catal. B 2007, 70, 119–127. [Google Scholar] [CrossRef]
- Ström, H.; Lundström, A.; Andersson, B. Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 2009, 150, 69–82. [Google Scholar] [CrossRef]
- Abu-Ramadan, E.; Saha, K.; Li, X. Modeling the depleting mechanism of urea-watersolution droplet for automotive selective catalytic reduction systems. AlChE J. 2011, 57, 3210–3225. [Google Scholar] [CrossRef]
- Lundström, A.; Waldheim, B.; Ström, H. Modelling of urea gas phase thermolysis and theoretical details on urea evaporation. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 2011, 255, 1392–1398. [Google Scholar] [CrossRef]
- Ebrahimian, V.; Nicolle, A.; Habchi, C. Detailed modeling of the evaporation and thermal decomposition of urea-water solution in SCR systems. AIChE J. 2012, 58, 1998–2009. [Google Scholar] [CrossRef]
- Gong, J.; Narayanaswamy, K.; Rutland, C.J. Heterogeneous Ammonia Storage Model for NH3–SCR Modeling. Ind. Eng. Chem. Res. 2016, 55, 5874–5884. [Google Scholar] [CrossRef]
- Seneque, M.; Can, F.; Duprez, D.; Courtois, X. NOx Selective Catalytic Reduction (NOx-SCR) by Urea: Evidence of the Reactivity of HNCO, Including a Specific Reaction Pathway for NOx Reduction Involving NO + NO2. ACS Catal. 2016, 6, 4064–4067. [Google Scholar] [CrossRef]
- Karjalainen, P.; Ronkko, T.; Lahde, T.; Rostedt, A.; Keskinen, J.; Saarikoski, S.; Aurela, M.; Hillamo, R.; Malinen, A.; Pirjola, L.; et al. Reduction of heavy-duty diesel exhaust particle number and mass at low exhaust temperature driving by the DOC and the SCR. SAE Int. J. Fuels Lubr. 2012, 5, e1114–e1122. [Google Scholar] [CrossRef]
- Koebel, M.; Strutz, E.O. Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects. Ind. Eng. Chem. Res. 2003, 42, 2093–2100. [Google Scholar] [CrossRef]
- Sung, D.Y.; Soo, J.K.; Joon, H.B.; In-Sik, N.; Young, S.M.; Jong-Hwan, L.; Byong, K.C.; Se, H.O. Decomposition of Urea into NH3 for the SCR Process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863. [Google Scholar] [CrossRef]
- Kleemann, M.; Elsener, M.; Koebel, M.; Wokaun, A. Hydrolysis of Isocyanic Acid on SCR Catalysts. Ind. Eng. Chem. Res. 2000, 39, 4120–4126. [Google Scholar] [CrossRef]
Test Step Number | SCR Inlet Gas Temp. (°C) | Engine Load (Nm) |
---|---|---|
Step 1 | 180 | 60 |
Step 2 | 214 | 82 |
Step 3 | 255 | 111 |
Step 4 | 308 | 180 |
Step 5 | 344 | 316 |
Step 6 | 380 | 400 |
Amount of NH3 Reacted (g) | Amount of NH3 Dosed (g) | Percentage of NH3 Reacted (%) | |
---|---|---|---|
Gas phase | 252 | 426 | 59 |
Liquid phase | 185 | 374 | 49 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sala, R.; Bielaczyc, P.; Brzezanski, M. Concept of Vaporized Urea Dosing in Selective Catalytic Reduction. Catalysts 2017, 7, 307. https://doi.org/10.3390/catal7100307
Sala R, Bielaczyc P, Brzezanski M. Concept of Vaporized Urea Dosing in Selective Catalytic Reduction. Catalysts. 2017; 7(10):307. https://doi.org/10.3390/catal7100307
Chicago/Turabian StyleSala, Rafal, Piotr Bielaczyc, and Marek Brzezanski. 2017. "Concept of Vaporized Urea Dosing in Selective Catalytic Reduction" Catalysts 7, no. 10: 307. https://doi.org/10.3390/catal7100307
APA StyleSala, R., Bielaczyc, P., & Brzezanski, M. (2017). Concept of Vaporized Urea Dosing in Selective Catalytic Reduction. Catalysts, 7(10), 307. https://doi.org/10.3390/catal7100307