Fe-NC@NiFe-LDH Derived from Iron-Based Metal–Organic Frameworks as an Efficient Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterizations and Composition Analysis
2.2. Electrocatalytic Properties
2.3. Aqueous Zn–Air Battery Performance
3. Experimental
3.1. Materials
3.2. Synthesis of NH2-MIL-101(Fe)
3.3. Synthesis of Fe-NC
3.4. Synthesis of Fe-NC@NiFe-LDH
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Zhang, D.; Zhang, Y.; Yang, D.; Li, R.; Yu, F.; Zhong, K. A pH-dependent microkinetic modeling guided synthesis of porous dual-atom catalysts for efficient oxygen reduction in Zn–air batteries. Energy Environ. Sci. 2025, 18, 4949–4961. [Google Scholar] [CrossRef]
- Xu, L.; Mao, Z.; Liu, J.; Bi, M.; Tu, T.; Tian, Y.; Zhou, X.; Wu, J.; Wu, Y.; Su, J.; et al. Carbon-Encapsulated CeO2-Co Heterostructure via Tight Coupling Enables Corrosion-Resistant Bifunctional Catalysis in Zinc-Air Battery. Adv. Energy Mater. 2025, 15, 2501790. [Google Scholar] [CrossRef]
- Wan, Z.; Ma, Z.; Deng, X.; Wu, Y.; Li, J.; Wang, X. Weakening the Dissociation Barrier of Hydroxyl in Fe–N–C Catalysts via Precisely Manipulating d–p Orbital Hybridization Behaviors for Efficient Oxygen Reduction Reaction. Adv. Energy Mater. 2025, 27, 2501630. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.C.; Feizpoor, S.; Li, L.; Zhang, X.; Xu, X. Tailoring oxygen reduction reaction kinetics of Fe−N−C catalyst via spin manipulation for efficient zinc–air batteries. Adv. Mater. 2024, 36, 2400523. [Google Scholar] [CrossRef]
- Ming, L.; Qi, L.; Xu, X.; Xue, M.; Xiao, X. CoTe2/NiTe2 heterojunction embedded in N-doped hollow carbon nanoboxes as high-efficient ORR/OER catalyst for rechargeable zinc-air battery. Chem. Eng. J. 2024, 486, 150256. [Google Scholar]
- Cha, Y.; Jang, H.; Noh, D.; Seong, Y.; Choi, J.; Kim, T. Precisely controllable microwave-driven reconstruction of Ni-Co-Fe trimetallic needle structures on nitrogen-doped carbon as bifunctional oxygen catalysts for Zn-air batteries. Adv. Compos. Hybrid Mater. 2025, 8, 335. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, J.; Gao, H.; Jia, H.; Wu, C.; Deng, C.; Xu, G.; Ammar, M.; Jiang, H.; Zhang, L. Carbon cloth-based nitrogen-doped carbon nanotube-encapsulated Co nanoparticles as bifunctional oxygen electrocatalysts for flexible Zn-air batteries. J. Mater. Sci. Technol. 2026, 255, 65–74. [Google Scholar] [CrossRef]
- Lun, L.; Zian, X.; Yu, X.; Mei, G.; Qin, J.; Bao, Z.; Chong, L.; Shao, C.; Zhe, Z.; Wang, H.-L. Conjugated microporous polymer derived hierarchically porous N-rich nanocarbon as a durable electrocatalyst for oxygen reduction reaction in Zn-air battery. Chem. Eng. J. 2024, 497, 155560. [Google Scholar]
- Ren, S.; Duan, X.; Liang, S.; Zhang, M.; Zheng, H. Bifunctional electrocatalysts for Zn–air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. [Google Scholar] [CrossRef]
- Mao, M.; Wu, X.; Hu, Y.; Yuan, Q.; He, Y.-B.; Kang, F. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 2021, 52, 277–283. [Google Scholar] [CrossRef]
- Kim, T.; Muthurasu, A.; Ko, T.H.; Chae, S.-H.; Kim, H.Y. Metal-Organic Framework Supported Dual Functional Air Cathode Carbon Nanofiber as an Efficient Electrocatalyst for the Rechargeable Zinc-Air Batteries. Small 2025, 21, 2500033. [Google Scholar] [CrossRef]
- Liu, L.; Hu, J.; Rao, X.; Zhu, Y.; Li, P.; Chen, S.; Zhang, S. Revealing the dependence of oxygen reduction mechanism and activity on the D-band center difference of Fe-M bimetallic sites. Appl. Catal. B Environ. 2025, 11, 126191. [Google Scholar] [CrossRef]
- Lan, L.; Wu, Y.; Pei, Y.; Wei, Y.; Hu, T.; Lützenkirchen-Hecht, D.; Yuan, K.; Chen, Y. High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries. Adv. Mater. 2025, 37, 2417711. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-E.; Hong, W.-X.; Pourzolfaghar, H.; Wang, W.-H.; Li, Y.-Y. A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. Chem. Eng. J. 2023, 460, 141868. [Google Scholar] [CrossRef]
- Qiao, G.; Rui, Y.; Yu, Z.; Ying, Y.; Jie, F.; Long, C. Performance of Nitrogen-Doped Carbon Nanoparticles Carrying FeNiCu as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery. Small 2024, 20, 2400830. [Google Scholar]
- Li, X.; Wei, J.; Li, Q.; Zheng, S.; Xu, Y.; Du, P. Nitrogen-Doped Cobalt Oxide Nanostructures Derived from Cobalt-Alanine Complexes for High-Performance Oxygen Evolution Reactions. Adv. Funct. Mater. 2018, 28, 1800886. [Google Scholar] [CrossRef]
- Yang, M.; Hu, X.; Fang, Z.; Sun, L.; Yuan, Z.; Wang, S. Bifunctional MOF-Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters. Adv. Funct. Mater. 2017, 27, 1701971. [Google Scholar] [CrossRef]
- Wang, X.; Shan, Y.; Wang, L.; Chen, K.; Yu, X. Self-Supporting 3D Cross-linked NiFe-Co/NC@ NiMoO4 Electrode for Efficient Overall Water Splitting and Rechargeable Zn-air Batteries. Appl. Catal. B Environ. 2025, 25, 125406. [Google Scholar] [CrossRef]
- Wang, W.H.; Han, C.H.; Hong, W.X.; Chiu, Y.C.; Tseng, I.H. NiFe Layered Double Hydroxide (LDH) Anchored, Fe Single Atom and Nanoparticle Embedded on Nitrogen-Doped Carbon-CNT (Carbon Nanotube) Framework as a Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. J. Energy Storage 2024, 85, 111058. [Google Scholar] [CrossRef]
- Gan, M.; Lu, C.; Feng, W.; He, C.; Hu, J.; Xie, F.; He, W.; Sun, Z. Rational Design of Efficient Zn–CoNi/Air Hybrid Batteries via Charge Redistribution in Iron Phthalocyanine Modified Cobalt-Nickel Layered Double Hydroxide. Energy Storage Mater. 2025, 20, 104755. [Google Scholar] [CrossRef]
- Dang, D.; Zhang, L.; Long, G.; Liu, C.; Fan, W.; Zheng, J.; Wang, T.; Liu, Q.; Han, X. Modulation the Coordination of Fe-Co Diatomic Sites with Boron Atom for Fuel Cells and Zn-Air Battery. Appl. Catal. B Environ. 2025, 379, 125679. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, Y.; Zhang, Q.; Xie, Z.; Wei, J.; Zhou, Z. MOF-Derived Co and Fe Species Loaded on N-Doped Carbon Networks as Efficient Oxygen Electrocatalysts for Zn-Air Batteries. Nano-Micro Lett. 2022, 14, 162. [Google Scholar] [CrossRef]
- Ramachandran, R.; Thangavel, S.; Li, M.; Shan, H.; Xu, Z.-X.; Wang, F. Efficient Degradation of Organic Dye Using Ni-MOF Derived NiCo-LDH as Peroxymonosulfate Activator. Chemosphere 2021, 271, 128509. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, W.; Wu, H.; Li, Y.; Ren, X.; Li, M. In Situ Cascade Derivation Toward a Hierarchical Layered Double Hydroxide Magnetic Absorbent for High-Performance Protein Separation. ACS Sustain. Chem. Eng. 2020, 8, 4966–4974. [Google Scholar] [CrossRef]
- Dong, Y.; Komarneni, S.; Zhang, F.; Wang, N.; Terrones, M.; Hu, W. “Structural Instability” Induced High-Performance NiFe Layered Double Hydroxides as Oxygen Evolution Reaction Catalysts for pH-Near-Neutral Borate Electrolyte: The Role of Intercalates. Appl. Catal. B Environ. 2020, 263, 118343. [Google Scholar] [CrossRef]
- Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S.L. Cactus-like NiCo2S4@NiFe LDH Hollow Spheres as an Effective Oxygen Bifunctional Electrocatalyst in Alkaline Solution. Appl. Catal. B Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Lv, S.; Li, Y.; Ren, J.; Huang, Y. Hollow NH2-MIL-101@TA Derived Electrocatalyst for Enhanced Oxygen Reduction Reaction and Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2021, 46, 38692–38700. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Xun, S.; Xu, Y.; He, J.; Jiang, D.; Yang, R.; Li, D. MOF-Derived Cobalt Oxides Nanoparticles Anchored on CoMoO4 as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. J. Alloys Compd. 2019, 806, 1097–1104. [Google Scholar] [CrossRef]
- Huang, L.-B.; Zhao, L.; Zhang, Y.; Luo, H.; Zhang, X.; Zhang, J. Engineering Carbon-Shells of M@NC Bifunctional Oxygen Electrocatalyst Towards Stable Aqueous Rechargeable Zn-Air Batteries. Chem. Eng. J. 2021, 418, 129409. [Google Scholar] [CrossRef]
- Pan, M.; Qian, G.; Yu, T.; Chen, J.; Luo, L.; Zou, Y. Ni Modified Co2VO4 Heterojunction with Poor/Rich-Electron Structure for Overall Urea-Rich Wastewater Oxidation. Chem. Eng. J. 2022, 435, 134986. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, B.; Shi, J.-W.; Hao, H.; Ma, D.; Lv, Y. 3D Hierarchical Heterostructure Assembled by NiFe LDH/(NiFe)Sx on Biomass-Derived Hollow Carbon Microtubes as Bifunctional Electrocatalysts for Overall Water Splitting. Electrochim. Acta 2020, 348, 136339. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray Diffraction Patterns of Graphite and Turbostratic Carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Gao, C.; Mu, S.; Yan, R.; Chen, F.; Ma, T.; Cao, S. Recent Advances in ZIF-Derived Atomic Metal–N–C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. Small 2022, 18, 2105409. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Z.; Guan, J. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777. [Google Scholar] [CrossRef]
- Pegis, M.L.; Wise, C.F.; Martin, D.J.; Mayer, J.M. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem Rev. 2018, 118, 2340–2391. [Google Scholar] [CrossRef]
- Taha, A.A.; Huang, L.; Ramakrishna, S.; Liu, Y. MOF [NH2-MIL-101(Fe)] as a Powerful and Reusable Fenton-Like Catalyst. J. Water Process Eng. 2020, 33, 101004. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; Cui, Z.; Li, G.; Han, B.; Zhang, Q. Dual-Active-Site Hierarchical Architecture Containing NiFe-LDH and ZIF-Derived Carbon-Based Framework Composite as Efficient Bifunctional Oxygen Electrocatalysts for Durable Rechargeable Zn-Air Batteries. Chem. Eng. J. 2020, 399, 125718. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sha, P.; Ling, Z.; Liu, K.; Chen, D.; Pang, B.; Yan, F.; Sui, J.; Zhang, Q.; Yu, J.; Yu, L.; et al. Fe-NC@NiFe-LDH Derived from Iron-Based Metal–Organic Frameworks as an Efficient Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries. Catalysts 2026, 16, 152. https://doi.org/10.3390/catal16020152
Sha P, Ling Z, Liu K, Chen D, Pang B, Yan F, Sui J, Zhang Q, Yu J, Yu L, et al. Fe-NC@NiFe-LDH Derived from Iron-Based Metal–Organic Frameworks as an Efficient Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries. Catalysts. 2026; 16(2):152. https://doi.org/10.3390/catal16020152
Chicago/Turabian StyleSha, Pengfei, Zhi Ling, Kaifa Liu, Di Chen, Beili Pang, Fengying Yan, Jing Sui, Qian Zhang, Jianhua Yu, Liyan Yu, and et al. 2026. "Fe-NC@NiFe-LDH Derived from Iron-Based Metal–Organic Frameworks as an Efficient Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries" Catalysts 16, no. 2: 152. https://doi.org/10.3390/catal16020152
APA StyleSha, P., Ling, Z., Liu, K., Chen, D., Pang, B., Yan, F., Sui, J., Zhang, Q., Yu, J., Yu, L., & Dong, L. (2026). Fe-NC@NiFe-LDH Derived from Iron-Based Metal–Organic Frameworks as an Efficient Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries. Catalysts, 16(2), 152. https://doi.org/10.3390/catal16020152

