2-(5-Phenylpyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinolyliron Chlorides as Precatalysts for Ethylene Oligomerization
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Fe1–Fe6
2.2. Ethylene Oligomerization
3. Experimental Section
3.1. General Considerations
3.2. Synthesis of 2-(5-Phenyl-1H-pyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinoline Iron Chloride Complexes (Fe1–Fe6)
3.3. X-Ray Crystallographic Studies
3.4. General Ethylene Oligomerization Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skupińska, J. Oligomerization of a-Olefins to Higher Oligomers. Chem. Rev. 1991, 91, 613–648. [Google Scholar]
- Britovsek, G.J.P.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; McTavish, S.J.; Solan, G.A.; White, A.J.P.; Williams, D.J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 849–850. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Wass, D.F. The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. Angew. Chem. Int. Ed. 1999, 38, 428–447. [Google Scholar]
- Forestière, A.; Olivier-Bourbigou, H.; Saussine, L. Oligomerization of Monoolefins by Homogeneous Catalysts. Oil Gas Sci. Technol. 2009, 64, 649–667. [Google Scholar]
- Dixon, J.T.; Green, M.J.; Hess, F.M.; Morgan, D.H. Advances in selective ethylene trimerisation—A critical overview. J. Organomet. Chem. 2004, 689, 3641–3668. [Google Scholar]
- Small, B.L.; Marcucci, A. Iron Catalysts for the Head-to-Head Dimerization of α-Olefins and Mechanistic Implications for the Production of Linear α-Olefins. J. Organomet. 2001, 20, 5738–5744. [Google Scholar]
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to New Families of Catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar]
- Gibson, V.C.; Spitzmesser, S.K. Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev. 2003, 103, 283–315. [Google Scholar]
- Bianchini, C.; Giambastiani, G.; Rios, I.G.; Mantovani, G.; Meli, A.; Segarra, A.M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev. 2006, 250, 1391–1418. [Google Scholar]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169–1203. [Google Scholar] [CrossRef]
- Jie, S.-Y.; Sun, W.-H.; Xiao, T. Prospects and Crucial Problems in Oligomerization and Polymerization with Iron and Cobalt Complex Catalysts. Chin. J. Polym. Sci. 2010, 28, 299–304. [Google Scholar] [CrossRef]
- Pillai, S.M.; Ravindranathan, M.; Sivaram, S. Dimerization of Ethylene and Propylene Catalyzed by Transition-Metal Complexes. Chem. Rev. 1986, 86, 353–399. [Google Scholar] [CrossRef]
- Al-Jarallah, A.M.; Anabtawi, J.A.; Siddiqui, M.A.B.; Aitani, A.M.; Al-Sa’doun, A.W. Ethylene dimerization and oligomerization to butene-1 and linear α-olefins: A review of catalytic systems and processes. Catal. Today 1992, 14, 1–121. [Google Scholar]
- McGuinness, D.S. Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization, and Beyond. Chem. Rev. 2011, 111, 2321–2341. [Google Scholar]
- Speiser, F.; Braunstein, P.; Saussine, L. Catalytic Ethylene Dimerization and Oligomerization: Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands. Acc. Chem. Res. 2005, 38, 784–793. [Google Scholar]
- Britovsek, G.J.P.; Malinowski, R.; McGuinness, D.S.; Nobbs, J.D.; Tomov, A.K.; Wadsley, A.W.; Young, C.T. Ethylene Oligomerization beyond Schulz–Flory Distributions. ACS Catal. 2015, 5, 6922–6925. [Google Scholar] [CrossRef]
- Bariashir, C.; Huang, C.; Solan, G.A.; Sun, W.-H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord. Chem. Rev. 2019, 385, 208–229. [Google Scholar]
- Petit, J.; Magna, L.; Mézailles, N. Alkene oligomerization via metallacycles: Recent advances and mechanistic insights. Coord. Chem. Rev. 2022, 450, 214227. [Google Scholar]
- Schmidt, R.; Welch, M.B.; Knudsen, R.D.; Gottfried, S.; Alt, H.G. N,N,N-Tridentate iron(II) and vanadium(III) complexes Part II: Catalytic behavior for the oligomerization and polymerization of ethene and characterization of the resulting products. J. Mol. Catal. A Chem. 2004, 222, 17–25. [Google Scholar]
- Bryliakov, K.P.; Talsi, E.P. Frontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins. Coord. Chem. Rev. 2012, 256, 2994–3007. [Google Scholar] [CrossRef]
- Sydora, O.L. Selective Ethylene Oligomerization. Organometallics 2019, 38, 997–1010. [Google Scholar] [CrossRef]
- Al-Sherehy, F.A. IFP-SABIC Process for the Selective Ethylene Dimerization to Butene-1. Stud. Surf. Sci. Catal. 1996, 100, 515–523. [Google Scholar]
- Al-Sa’doun, A.W. Dimerization of ethylene to butene-1 catalyzed by Ti(OR’)4-A1R3. Appl. Catal. A Gen. 1993, 105, 1–40. [Google Scholar] [CrossRef]
- Suttil, J.A.; McGuinness, D.S. Mechanism of Ethylene Dimerization Catalyzed by Ti(OR′)4/AlR3. Organometallics 2012, 31, 7004–7010. [Google Scholar] [CrossRef]
- Nyamato, G.S.; Alam, M.G.; Ojwach, S.O.; Akerman, M.P. (Pyrazolyl)-(phosphinoyl)pyridine iron(II), cobalt(II) and nickel(II) complexes: Synthesis, characterization and ethylene oligomerization studies. J. Organomet. Chem. 2015, 783, 64–72. [Google Scholar] [CrossRef]
- Zou, S.; Wang, Z.; Wang, Y.; Ma, Y.; Sun, Y.; Sun, W.-H. On-Purpose Oligomerization by 2-t-Butyl-4-arylimino-2,3-dihydroacridylnickel(II) Bromides. Catalysts 2024, 14, 342. [Google Scholar] [CrossRef]
- Lin, W.; Liu, M.; Xu, L.; Ma, Y.; Zhang, L.; Flisak, Z.; Hu, X.; Liang, T.; Sun, W.-H. Nickel(II) complexes with sterically hindered 5,6,7-trihydroquinoline derivatives selectively dimerizing ethylene to 1-butene. Appl. Organomet. Chem. 2022, 36, e6596. [Google Scholar] [CrossRef]
- Carter, A.; Cohen, S.A.; Cooley, N.A.; Murphy, A.; Scutta, J.; Wass, D.F. High activity ethylene trimerisation catalysts based on diphosphine ligands. Chem. Commun. 2002, 858–859. [Google Scholar] [CrossRef]
- Overett, M.J.; Blann, K.; Bollmann, A.; Dixon, J.T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D.H.; Neveling, A.; Otto, S. Ethylene trimerisation and tetramerisation catalysts with polarsubstituted diphosphinoamine ligands. Chem. Commun. 2005, 622–624. [Google Scholar] [CrossRef]
- Agapie, T.; Day, M.W.; Henling, L.M.; Labinger, J.A.; Bercaw, J.E. A Chromium-Diphosphine System for Catalytic Ethylene Trimerization: Synthetic and Structural Studies of Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand with ortho-Methoxyaryl Substituents. Organometallics 2006, 25, 2733–2742. [Google Scholar] [CrossRef]
- Deckers, P.J.W.; Hessen, B.; Teuben, J.H. Catalytic Trimerization of Ethene with Highly Active Cyclopentadienyl-Arene Titanium Catalysts. Organometallics 2002, 21, 5122–5135. [Google Scholar] [CrossRef]
- Bollmann, A.; Blann, K.; Dixon, J.T.; Hess, F.M.; Killian, E.; Maumela, H.; McGuinness, D.S.; Morgan, D.H.; Neveling, A.; Otto, S.; et al. Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities. J. Am. Chem. Soc. 2004, 126, 14712–14713. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, S.; Jiang, X.; Yang, C.; Niu, B.; Ning, Y. The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization. J. Mol. Catal. A Chem. 2008, 279, 90–93. [Google Scholar] [CrossRef]
- McGuinness, D.S.; Overett, M.; Tooze, R.P.; Blann, K.; Dixon, J.T.; Slawin, A.M.Z. Ethylene Tri- and Tetramerization with Borate Cocatalysts: Effects on Activity, Selectivity, and Catalyst Degradation Pathways. Organometallics 2007, 26, 1108–1111. [Google Scholar] [CrossRef]
- Breuil, P.-A.R.; Magna, L.; Olivier-Bourbigou, H. Role of Homogeneous Catalysis in Oligomerization of Olefins: Focus on Selected Examples Based on Group 4 to Group 10 Transition Metal Complexes. Catal. Lett. 2015, 145, 173–192. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Corradini, P. Ziegler-Natta oligomerization of 1-alkenes: A catalyst’s “fingerprint”, Hydrooligomerization of propene in the presence of a highly isospecific MgClz-supported catalyst. Makromol. Chem. 1993, 194, 1079–1093. [Google Scholar] [CrossRef]
- Novaro, O.; Chow, S.; Magnouat, P. Mechanism of Oligomerization of a-Olefins with Ziegler-Natta Catalysts. J. Catal. 1976, 41, 91–100. [Google Scholar] [CrossRef]
- Keim, W. Oligomerization of Ethylene to a-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 2013, 52, 12492–12496. [Google Scholar] [CrossRef]
- Keim, W. Nickel: An Element with Wide Application in Industrial Homogeneous Catalysis. Angew. Chem. Int. Ed. Engl. 1990, 29, 235–244. [Google Scholar] [CrossRef]
- Kuhn, P.; Semeril, D.; Matt, D.; Chetcuti, M.J.; Lutz, P. Structure–reactivity relationships in SHOP-type complexes: Tunable catalysts for the oligomerisation and polymerisation of ethylene. Dalton Trans. 2007, 5, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Peuckertt, M.; Keim, W. A New Nickel Complex for the Oligomerization of Ethylene. Organometallics 1983, 2, 594–597. [Google Scholar] [CrossRef]
- Sun, W.-H.; Jie, S.; Zhang, S.; Zhang, W.; Song, Y.; Ma, H.; Chen, J.; Wedeking, K.; Fröhlich, R. Iron Complexes Bearing 2-Imino-1,10-phenanthrolinyl Ligands as Highly Active Catalysts for Ethylene Oligomerization. Organometallics 2006, 25, 666–677. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, W.-H.; Li, Z.-L.; Shao, C.-X.; Hu, Y.-L.; Li, X.-H. Ethylene polymerization by iron complexes with symmetrical and unsymmetrical ligands. Polym. Int. 2002, 51, 994–997. [Google Scholar] [CrossRef]
- Small, B.L.; Brookhart, M. Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear r-Olefins. J. Am. Chem. Soc. 1998, 120, 7143–7144. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; Mastroianni, S.; McTavish, S.J.; Redshaw, C.; Solan, G.A.; Strömberg, S.; et al. Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6-Bis(Imino)Pyridyl Ligands: Synthesis, Structures, and Polymerization Studies. J. Am. Chem. Soc. 1999, 121, 8728–8740. [Google Scholar] [CrossRef]
- Zilbershtein, T.M.; Kardash, V.A.; Suvorova, V.V.; Golovko, A.K. Decene formation in ethylene trimerization reaction catalyzed by Cr–pyrrole system. Appl. Catal. A Gen. 2014, 475, 371–378. [Google Scholar] [CrossRef]
- Zhang, S.; Jie, S.; Shi, Q.; Sun, W.-H. Chromium(III) complexes bearing 2-imino-1,10-phenanthrolines: Synthesis, molecular structures and ethylene oligomerization and polymerization. J. Mol. Catal. A Chem. 2007, 276, 174–183. [Google Scholar] [CrossRef]
- Gao, R.; Liang, T.; Wang, F.; Sun, W.-H. Chromium(III) complexes bearing 2-benzoxazolyl-6-arylimino-pyridines: Synthesis and their ethylene reactivity. J. Organomet. Chem. 2009, 694, 3701–3707. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Sun, W.-H. Chromium(III) complexes bearing 2-benzazole-1,10-phenanthrolines: Synthesis, molecular structures and ethylene oligomerization and polymerization. Dalton Trans. 2009, 6354–6363. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, W.-H.; Zhang, S.; Hou, J.; Wedeking, K.; Schultz, S.; Fröhlich, R.; Song, H. Synthesis, Characterization, and Ethylene Oligomerization and Polymerization of [2,6-Bis(2-benzimidazolyl)pyridyl]chromium Chlorides. Organometallics 2006, 25, 1961–1969. [Google Scholar] [CrossRef]
- Junges, F.; Kuhn, M.C.A.; dos Santos, A.H.D.P.; Rabello, C.R.K.; Thomas, C.M.; Carpentier, J.-F.; Casagrande, O.L., Jr. Chromium Catalysts Based on Tridentate Pyrazolyl Ligands for Ethylene Oligomerization. Organometallics 2007, 26, 4010–4014. [Google Scholar] [CrossRef]
- Tomov, A.K.; Chirinos, J.J.; Jones, D.J.; Long, R.J.; Gibson, V.C. Experimental Evidence for Large Ring Metallacycle Intermediates in Polyethylene Chain Growth Using Homogeneous Chromium Catalysts. J. Am. Chem. Soc. 2005, 127, 10166–10167. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, M.; Sun, W.-H. Synthesis, characterization and ethylene oligomerization and polymerization of 2-(1H-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridylchromium chlorides. Polyhedron 2010, 29, 142–147. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, W.; Hao, P.; Zhang, S.; Gao, K.; Sun, W.-H. Chromium(III) complexes ligated by 2-(1-isopropyl-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridines: Synthesis, characterization and their ethylene oligomerization and polymerization. J. Organomet. Chem. 2008, 693, 750–762. [Google Scholar] [CrossRef]
- Amolegbe, S.A.; Asma, M.; Zhang, M.; Li, G.; Sun, W.-H. Synthesis, Characterization, and Ethylene Oligomerization and Polymerization by 2-Quinoxalinyl-6-iminopyridine Chromium Chlorides. Aust. J. Chem. 2008, 61, 397–403. [Google Scholar] [CrossRef]
- Xiao, L.; Gao, R.; Zhang, M.; Li, Y.; Cao, X.; Sun, W.-H. 2-(1H-2-Benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl Iron(II) and Cobalt(II) Dichlorides: Syntheses, Characterizations, and Catalytic Behaviors toward Ethylene Reactivity. Organometallics 2009, 28, 2225–2233. [Google Scholar] [CrossRef]
- Sun, W.-H.; Hao, P.; Zhang, S.; Shi, Q.; Zuo, W.; Tang, X.; Lu, X. Iron(II) and Cobalt(II) 2-(Benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl Complexes as Catalysts for Ethylene Oligomerization and Polymerization. Organometallics 2007, 26, 2720–2734. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, P.; Zuo, W.; Gao, K.; Sun, W.-H. 2-(1-Isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl transition metal (Fe, Co, and Ni) dichlorides: Syntheses, characterizations and their catalytic behaviors toward ethylene reactivity. J. Organomet. Chem. 2008, 693, 1829–1840. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, W.; Sun, W.-H.; Hu, X.; Redshaw, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline Iron(II) Chloride Complexes: Synthesis, Characterization, and Ethylene Polymerization Behavior. Organometallics 2012, 31, 5039–5048. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, R.; Liang, T.; Hu, X.; Solan, G.A.; Sun, W.-H. Selectivity Effects on N,N,N′-Cobalt Catalyzed Ethylene Dimerization/Trimerization Dictated through Choice of Aluminoxane Cocatalyst. Organometallics 2019, 38, 1143–1150. [Google Scholar] [CrossRef]
- Zhang, R.; Han, M.; Oleynik, I.V.; Solan, G.A.; Oleynik, I.I.; Ma, Y.; Liang, T.; Sun, W.-H. Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through gem-dimethyl substitution and incorporation of ortho-cycloalkyl substituents. Appl. Organomet. Chem. 2021, 35, e6376. [Google Scholar] [CrossRef]
- Han, M.; Oleynik, I.I.; Ma, Y.; Oleynik, I.V.; Solen, G.A.; Liang, T.; Sun, W.-H. α,α’-Bis (imino)-2,3:5,6-bis (pentamethylene)pyridines appended with benzhydryl and cycloalkyl substituents: Probing their effectiveness as tunable N,N,N-supports for cobalt ethylene polymerization catalysts. Appl. Organomet. Chem. 2021, 35, e6429. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, Q.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis. Catalysts 2024, 14, 213. [Google Scholar] [CrossRef]
- Suo, H.; Li, Z.; Oleynik, I.V.; Wang, Z.; Oleynik, I.I.; Ma, Y.; Liu, Q.; Sun, W.-H. Achieving strictly linear polyethylenes by the NNN-Fe precatalysts finely tuned with different sizes of ortho-cycloalkyl substituents. Appl. Organomet. Chem. 2020, 34, e5937. [Google Scholar] [CrossRef]
- Appukuttan, V.K.; Liu, Y.; Son, B.C.; Ha, C.-S.; Suh, H.; Kim, I. Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene. Organometallics 2011, 30, 2285–2294. [Google Scholar] [CrossRef]
- Song, S.; Gao, R.; Zhang, M.; Li, Y.; Wang, F.; Sun, W.-H. 2-b-Benzothiazolyl-6-iminopyridylmetal dichlorides and the catalytic behavior towards ethylene oligomerization and polymerization. Inorg. Chim. Acta 2011, 376, 373–380. [Google Scholar] [CrossRef]
- Sun, W.-H.; Hao, P.; Li, G.; Zhang, S.; Wang, W.; Yi, J.; Asma, M.; Tang, N. Synthesis and characterization of iron and cobalt dichloride bearing 2-quinoxalinyl-6-iminopyridines and their catalytic behavior toward ethylene reactivity. J. Organomet. Chem. 2007, 692, 4506–4518. [Google Scholar] [CrossRef]
- Chen, Q.; Suo, H.; Zhang, W.; Zhang, R.; Solan, G.A.; Liang, T.; Sun, W.-H. 1,5-Naphthyl-linked bis(imino)pyridines as binucleating scaffolds for dicobalt ethylene oligo-/polymerization catalysts: Exploring temperature and steric effects. Dalton Trans. 2019, 48, 8264–8278. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystalstructure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Bond Lengths | |||
---|---|---|---|
Fe(1)-N(1) | 2.2416(2) | N(1)-C(17) | 1.276(4) |
Fe(1)-N(2) | 2.1243(2) | N(2)-C(10) | 1.340(3) |
Fe(1)-N(3) | 2.2002(2) | N(2)-C(18) | 1.347(3) |
Fe(1)-Cl(1) | 2.3179(9) | N(3)-C(9) | 1.341(3) |
Fe(1)-Cl(2) | 2.3132(7) | N(3)-N(4) | 1.340(3) |
Bond Angles | |||
Cl(1)-Fe(1)-Cl(2) | 114.45(3) | Cl(2)-Fe(1)-N(2) | 124.56(6) |
Cl(1)-Fe(1)-N(1) | 103.81(6) | Cl(2)-Fe(1)-N(3) | 95.18(6) |
Cl(1)-Fe(1)-N(2) | 120.43(6) | N(1)-Fe(1)-N(2) | 73.85(8) |
Cl(1)-Fe(1)-N(3) | 95.83(6) | N(1)-Fe(1)-N(3) | 146.46(8) |
Cl(2)-Fe(1)-N(1) | 100.89(6) | N(2)-Fe(1)-N(3) | 72.78(7) |
Entry | Cat | Co-Catalyst | Al/Fe | Oligomers b (wt.%) | Wax d | |||||
---|---|---|---|---|---|---|---|---|---|---|
C4/ƩC | C6/ƩC | C8/ƩC | C10/ƩC | α-Olefin (%) | Activity c | |||||
1 | Fe4 | Et2AlCl | 300 | 25.4 | 21.8 | 53.7 | - | >97 | 0.21 | - |
2 | Fe4 | EtAlCl2 | 300 | 26.3 | 55.9 | 6.2 | 11.5 | >97 | 0.63 | - |
3 | Fe4 | EASC | 300 | 21.9 | 59.3 | 18.3 | - | >98 | 0.50 | - |
4 | Fe4 | MAO | 1000 | 57.0 | 33.5 | 6.3 | 3.2 | >90 | 2.70 | - |
5 | Fe4 | MMAO | 1000 | 97.2 | 2.7 | 0.1 | - | >95 | 6.78 | 1.19 |
Entry | Cat | Al/Fe | Temp (°C) | Oligomers b (wt.%) | Wax d | |||||
---|---|---|---|---|---|---|---|---|---|---|
C4/ƩC | C6/ƩC | C8/ƩC | C10/ƩC | α-Olefin (%) | Activity c | |||||
1 | Fe4 | 1250 | 20 | 86.3 | 10.6 | 2.1 | 1.0 | >97 | 2.19 | - |
2 | Fe4 | 1000 | 20 | 57.0 | 33.5 | 6.3 | 3.2 | >90 | 2.70 | - |
3 | Fe4 | 750 | 20 | 46.6 | 42.3 | 8.7 | 2.4 | >96 | 1.25 | - |
4 | Fe4 | 500 | 20 | 23.5 | 53.6 | 20.8 | 2.1 | >98 | 0.61 | - |
5 | Fe4 | 1000 | 10 | 51.8 | 32.4 | 12.2 | 3.6 | >93 | 1.00 | - |
6 | Fe4 | 1000 | 40 | 90.2 | 1.5 | 6.3 | 1.8 | >95 | 1.45 | - |
7 | Fe4 | 1000 | 60 | 88.4 | 1.1 | 10.3 | 0.2 | >98 | 0.74 | - |
8 | Fe4 | 1000 | 80 | 96.0 | 0.9 | 2.3 | 0.6 | >99 | 0.31 | 1.13 |
9 | Fe4 | 1000 | 100 | 94.8 | 0.1 | 4.8 | 0.3 | >99 | 0.11 | 3.65 |
10 e | Fe4 | 1000 | 20 | 55.9 | 32.7 | 9.0 | 2.3 | >97 | 2.30 | - |
11 f | Fe4 | 1000 | 20 | 63.3 | 22.6 | 10.4 | 3.7 | >96 | 1.82 | - |
12 g | Fe4 | 1000 | 20 | 35.3 | 56.7 | 4.9 | 3.0 | >99 | 0.25 | 1.74 |
13 | Fe1 | 1000 | 20 | 77.8 | 15.7 | 3.6 | 2.9 | >95 | 2.04 | - |
14 | Fe2 | 1000 | 20 | 65.1 | 9.4 | 19.1 | 6.4 | >95 | 1.04 | - |
15 | Fe3 | 1000 | 20 | 72.4 | 17.2 | 8.1 | 2.3 | >96 | 0.87 | - |
16 | Fe5 | 1000 | 20 | 62.4 | 23.1 | 11.0 | 3.5 | >98 | 2.37 | - |
17 | Fe6 | 1000 | 20 | 79.3 | 17.1 | 2.5 | 1.1 | >99 | 2.04 | - |
Entry | Solvent (MCH:TOL) | Oligomers b (wt.%) | |||||
---|---|---|---|---|---|---|---|
C4/ƩC | C6/ƩC | C8/ƩC | C10/ƩC | α-Olefin (%) | Activity c | ||
1 | 100:0 | 55.9 | 32.7 | 9.0 | 2.3 | >97 | 2.30 |
2 | 95:5 | 76.1 | 15.1 | 6.7 | 2.1 | >97 | 2.66 |
3 | 75:25 | 90.5 | 2.6 | 8.8 | 0.4 | >95 | 3.45 |
4 | 50:50 | 91.6 | 0.7 | 7.1 | 0.5 | >98 | 3.92 |
5 | 25:75 | 65.1 | 17.0 | 17.2 | 0.6 | >97 | 3.15 |
6 | 0:100 | 57.0 | 33.5 | 6.3 | 3.2 | >90 | 2.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Fang, Y.; Ma, Y.; Jin, L.; Wang, Y.; Hu, X.; Zhang, W.; Sun, W.-H. 2-(5-Phenylpyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinolyliron Chlorides as Precatalysts for Ethylene Oligomerization. Catalysts 2025, 15, 898. https://doi.org/10.3390/catal15090898
Gao J, Fang Y, Ma Y, Jin L, Wang Y, Hu X, Zhang W, Sun W-H. 2-(5-Phenylpyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinolyliron Chlorides as Precatalysts for Ethylene Oligomerization. Catalysts. 2025; 15(9):898. https://doi.org/10.3390/catal15090898
Chicago/Turabian StyleGao, Jiahao, Yaling Fang, Yanping Ma, Liqun Jin, Yizhou Wang, Xinquan Hu, Wenjuan Zhang, and Wen-Hua Sun. 2025. "2-(5-Phenylpyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinolyliron Chlorides as Precatalysts for Ethylene Oligomerization" Catalysts 15, no. 9: 898. https://doi.org/10.3390/catal15090898
APA StyleGao, J., Fang, Y., Ma, Y., Jin, L., Wang, Y., Hu, X., Zhang, W., & Sun, W.-H. (2025). 2-(5-Phenylpyrazol-3-yl)-8-arylimino-5,6,7-trihydroquinolyliron Chlorides as Precatalysts for Ethylene Oligomerization. Catalysts, 15(9), 898. https://doi.org/10.3390/catal15090898