Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of CuO with Different Particle Sizes and Their Thermal Decomposition of AP
2.2. Analysis of Gas Products from AP Decomposition Catalyzed by CuO with Different Particle Sizes
2.3. Kinetic Study of AP Catalyzed by CuO with Different Particle Sizes
2.4. Combustion Performances of CuO-S/AP and CuO-L/AP
3. Materials and Methods
3.1. Catalysts
3.2. Materials Characterizations
3.3. Catalytic Performance Characterizations
3.4. Combustion Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Liu, Y.; Fu, X.C.; Deng, N.M. Cu/Carbon Aerogels Derived from HKUST-1 for the Thermal Decomposition of Ammonium Perchlorate. ACS Appl. Nano Mater. 2024, 7, 17373–17378. [Google Scholar] [CrossRef]
- Zhou, P.; Ren, Z.; Tang, X.; Zheng, Z.; Zhang, K.; Liao, J.; Zhong, Y.; Zhang, Y.; Huang, C. Interaction Between Prussian Blue Ultrathin Nanosheet and Ammonium Perchlorate for Highly Efficient Thermal Decomposition. Adv. Funct. Mater. 2023, 33, 2300661. [Google Scholar] [CrossRef]
- Yu, J.; Kou, Y.; Luo, P.; Hu, Y.; Gao, H.; Zhao, F.; Jiang, W.; Xiao, L.; Hao, G. Facile Grinding Method for Preparing Nano-Cu-Cr-Fe Composite Metal Oxides with Enhanced Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate. Combust. Sci. Technol. 2025, 197, 1920–1936. [Google Scholar] [CrossRef]
- Li, R.; Lin, Y.; Zhu, J.; Wang, Z.; Zeng, K.; Wang, J.; Pei, C.; Xie, R.; Ma, Y. Synthesis of Cu-MOF-derived complex copper–chromium oxides and their catalytic study on the thermal decomposition of ammonium perchlorate. J. Solid State Chem. 2024, 336, 124764. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Wu, M.; Li, J.; Feng, Y.; Ning, X.; Li, H.; Wang, N.; Shi, B. Micro-aluminum powder with bi- or tri-component alloy coating as a promising catalyst: Boosting pyrolysis and combustion of ammonium perchlorate. Def. Technol. 2024, 33, 100–113. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Y.; Tan, H.; Xia, Z.; Zhai, L.; Hu, J.; Yang, Q.; Xie, G.; Chen, Z.; Chen, S. In Situ MOF-74-Pyrolysis-Generated Porous Carbon Supporting Spinel Cu0.15Co2.85O4/C Boosts Ammonium Perchlorate Accelerating Decomposition: Precise Cu Doping Modulating Oxygen Vacancy Concentration. Small 2024, 20, 2400712. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhou, P.; Tang, X.; Zeng, Q.; Yi, S.; Liao, J.; Hu, M.; Wu, D.; Zhang, B.; Liang, J.; et al. Hierarchical MOFs with Good Catalytic Properties and Structural Stability in Oxygen-Rich and High-Temperature Environments. Small 2024, 20, e2309302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, S.; Ren, Z.; Tang, X.; Zhang, K.; Zhou, R.; Wu, D.; Liao, J.; Zhang, Y.; Huang, C. In Situ Cutting of Ammonium Perchlorate Particles by Co-Bipy “scalpel” for High Efficiency Thermal Decomposition. Adv. Sci. 2022, 9, 2204109. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, S.; Ren, Z.; Wang, Y.; Zhang, Y.; Huang, C. Study on the thermal decomposition behavior of ammonium perchlorate catalyzed by Zn–Co cooperation in MOF. Inorg. Chem. Front. 2022, 9, 5195–5209. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, X.; Yuan, B.; Zhou, Y.; Zheng, Z.; Ren, Z.; Liao, J.; Liang, J.; Huang, C. Selective conversion of thermal decomposition products of ammonium perchlorate by amorphous CoSnOx. J. Hazard. Mater. 2024, 480, 136111. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Song, R.; Chen, C.; Alomar, T.S.; Xiao, F.; AlMasoud, N.; El-Bahy, Z.M.; Yang, Y.; Algadi, H.; Sun, L. Graphene oxide–supported Cu/Co nano-catalysts for thermal decomposition of ammonium perchlorate composites. Adv. Compos. Hybrid Mater. 2023, 6, 188. [Google Scholar] [CrossRef]
- Yan, Y.; Jin, B.; Zhou, Q.; Peng, R. Copper loaded carbon aerogel from chitosan-precursor promotes thermal decomposition of ammonium perchlorate for solid propellants. Adv. Powder Technol. 2023, 34, 104188. [Google Scholar] [CrossRef]
- Zhang, G.-P.; Cheng, Y.-H.; Li, M.-M.; Xiao, L.; Guo, H.; Jiang, W.; Hao, G.-Z. Catalytic properties of CuO–Cr2O3 ternary nanocomposites favorable for the pyrolysis of ammonium perchlorate. Energetic Mater. Front. 2022, 3, 226–232. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Han, J.; Xia, Z.; Chen, S.; Xie, G.; Gao, S.; Lu, J.Y.; Yang, Q. In situ growth of copper-based energetic complexes on GO and an MXene to synergistically promote the thermal decomposition of ammonium perchlorate. Dalton Trans. 2023, 52, 17458–17469. [Google Scholar] [CrossRef]
- Wei, S.; Tan, H.; Zhang, Y.; Xia, Z.; Yang, Q.; Xie, G.; Chen, S. MOF-74 derivatives spinel CuCo2O4/C with d-band center modulation for accelerating ammonium perchlorate thermolysis. Fuel 2024, 370, 131814. [Google Scholar] [CrossRef]
- Gou, X.; Sun, X.; Yang, J.; Shi, J.; Yan, S.; Guo, X.; Yu, S.; Nie, J. Improvement of the Thermal Decomposition of Ammonium Perchlorate and Combustion of Aluminum Powder by Dual Core–Shell Ammonium Perchlorate-Based Composites Based on Self-Assembly Coating. Langmuir 2025, 41, 11674–11689. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yin, Y.; Hou, H.; Fan, N.; Yuan, F.; Shi, Y.; Meng, Q. Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 2010, 150, 585–589. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Huang, Y.; Wu, W.; Huang, C.; Meng, C. Fabrication and catalytic activity of ultra-long V2O5 nanowires on the thermal decomposition of ammonium perchlorate. Ceram. Int. 2014, 40, 11393–11398. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Li, H.; Guo, C.; Yang, L. Facile fabrication of well-dispersed CuxO nanoneedle on porous carbonized nano sponge and its promising application in the thermal decomposition of ammonium perchlorate. Powder Technol. 2021, 391, 206–213. [Google Scholar] [CrossRef]
- Zhang, Z.-K.; Guo, D.-Z.; Zhang, G.-M. Preparation, characterization and catalytic property of CuO nano/microspheres via thermal decomposition of cathode-plasma generating Cu2(OH)3NO3 nano/microspheres. J. Colloid Interface Sci. 2011, 357, 95–100. [Google Scholar] [CrossRef]
- Guo, C.; Lu, Y.; Tian, Y.; Guo, H.; Zhang, X. Porous SiO2 supported CuO as a promising catalyst on the thermal decomposition of ammonium perchlorate. Appl. Organomet. Chem. 2021, 35, e6215. [Google Scholar] [CrossRef]
- Tzvetkov, G.; Spassov, T.; Tsvetkov, M.; Rangelova, V. Mesoporous cauliflower-like CuO/Cu(OH)2 hierarchical structures as an excellent catalyst for ammonium perchlorate thermal decomposition. Mater. Lett. 2021, 291, 129534. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Lv, T.; Zhang, Z.; Zhou, Z.; Hu, T.; Meng, C.; Zhang, Y. Conjugated polyaniline as “conveyor” in tungstate boosting cation storage for high-performance aqueous batteries. Green Energy Environ. 2025, 10, 766–779. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, X.; Han, Z.; Wang, Y.; Jiang, H.; Zhang, F.; Zhu, X.; Meng, C.; Huang, C. Dual modification of cobalt silicate nanobelts by Co3O4 nanoparticles and phosphorization boosting oxygen evolution reaction properties. J. Colloid Interface Sci. 2025, 679, 1036–1045. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Zhao, Y.; Hu, T.; Gao, Z.; Meng, C. Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl. Surf. Sci. 2016, 377, 385–393. [Google Scholar] [CrossRef]
- Lv, T.-T.; Wang, H.-X.; Ren, X.-B.; Wang, L.-C.; Ding, R.-M.; Cao, J.-P.; Lv, B.-L. Protection of highly active sites on Cu2O nanocages: An efficient crystalline catalyst for ammonium perchlorate decomposition. CrystEngComm 2020, 22, 8214–8220. [Google Scholar] [CrossRef]
- Heng, B.; Xiao, T.; Hu, X.; Yuan, M.; Tao, W.; Huang, W.; Tang, Y. Catalytic activity of Cu2O micro-particles with different morphologies in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 2011, 524, 135–139. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Wang, S.; Dong, X.; Ding, C.; Mu, Y.; Cui, M.; Hu, T.; Meng, C.; Zhang, Y. Anion Structure Regulation of Cobalt Silicate Hydroxide Endowing Boosted Oxygen Evolution Reaction. Small 2024, 20, e2401394. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.; Lv, T.; Tan, X.; Wang, Q.; Wang, Y.; Meng, C. Core-shell cobalt-iron silicide electrocatalysts with enhanced bifunctional performance in hydrogen and oxygen evolution reactions. J. Colloid Interface Sci. 2025, 682, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Liu, Z.; Tan, H.; Xie, Z.; Li, J.; Zhang, G. Embedding of ferrocenes in the nanochannels of manganese energetic coordination polymers to retard their migration trends and enhance their catalytic efficiency in the thermal degradation of ammonium perchlorate. Appl. Surf. Sci. 2025, 711, 164042. [Google Scholar] [CrossRef]
- Hao, G.; Yang, R.; Kou, Y.; Wei, J.; Lu, Q.; Zhang, W.; Gao, H.; Zhao, F.; Jiang, W. Highly dispersed core–shell AP@AO energetic composites with good inhibitory effect on the low-temperature decomposition of AP and the burning rate of AP-based composite propellants. Fuel 2025, 402, 135967. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Xue, S.; Lv, W.; Qin, R.; Pan, W.; Lv, B. The facet-dependent catalytic performance of CeO2 nanocatalysts in the decomposition of ammonium perchlorate. Inorg. Chem. Front. 2025, 12, 3275–3284. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, B.; Hua, C.; Qiu, M.; Qiu, Y.; An, C.; Wang, J. Design of Polydopamine@iron Oxide-Coated Ammonium Perchlorate Core–Shell Composites for Enhancing the Combustion Performance of HTPB-Based Propellants. Langmuir 2025, 41, 1386–1399. [Google Scholar] [CrossRef]
- Ramdani, Y.; Liu, Q.; Huiquan, G.; Liu, P.; Zegaoui, A.; Wang, J. Synthesis and thermal behavior of Cu2O flower-like, Cu2O-C 60 and Al/Cu2O-C60 as catalysts on the thermal decomposition of ammonium perchlorate. Vacuum 2018, 153, 277–290. [Google Scholar] [CrossRef]
- Li, S.; Niu, Z.; Jiao, Y.; Jin, P.; Yang, D.; Bai, C.; Liu, J.; Li, G.; Luo, Y. Preparation of different morphology Cu/GO nanocomposites and their catalytic performance for thermal decomposition of ammonium perchlorate. RSC Adv. 2022, 12, 22806–22814. [Google Scholar] [CrossRef]
- Tunell, G.; Posnjak, Ε.; Ksanda, C.J. Geometrical and optical properties, and crystal structure of tenorite. Z. Für Krist.-Cryst. Mater. 1935, 90, 120–142. [Google Scholar] [CrossRef]
- Dagher, S.; Haik, Y.; Ayesh, A.I.; Tit, N. Synthesis and Optical Properties of Colloidal CuO Nanoparticles. J. Lumin. 2014, 151, 149–154. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Jiang, H.; Li, X.; Cheng, Y.; Meng, C. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: A potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem. Eng. J. 2019, 362, 818–829. [Google Scholar] [CrossRef]
- Luo, X.-L.; Wang, M.-J.; Yun, L.; Yang, J.; Chen, Y.-S. Structure-dependent activities of Cu2O cubes in thermal decomposition of ammonium perchlorate. J. Phys. Chem. Solids 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Jing, X.; Mu, Y.; Gao, Z.; Dong, X.; Meng, C.; Huang, C.; Zhang, Y. Intermetallic ferric nickel silicide alloy derived from magadiite by magnesiothermic reaction as bifunctional electrocatalyst for overall water splitting. Nano Res. Energy 2024, 3, e9120104. [Google Scholar] [CrossRef]
- Rong, M.; Zhang, Y.; Tan, X.; Wang, Y.; Gao, N.; Huang, C.; Meng, C. Breath inspired multifunctional low-cost inorganic colloidal electrolyte for stable zinc metal anode. J. Energy Chem. 2024, 102, 218–229. [Google Scholar] [CrossRef]
- Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Khairetdinov, E.; Boldyrev, V.; Burshtein, A. On the mechanism of conductivity of ammonium salts. J. Solid State Chem. 1974, 10, 288–293. [Google Scholar] [CrossRef]
- Bircumshaw, L.L.; Newman, B.H. The thermal decomposition of ammonium perchlorate, II. The kinetics of the decomposition, the effect of particle size, and discussion of results. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1955, 227, 228–241. [Google Scholar] [CrossRef]
- Yang, J.; Ling, L.; Li, Y.; Lu, L. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate. Acta Chim. Sin. 2023, 81, 328–337. [Google Scholar] [CrossRef]
- Garrison, M.D.; Wallace, S.G.; Baldwin, L.C.; Guo, Z.; Kuo, L.; Estevez, J.E.; Briseno, A.L.; Hersam, M.C.; Baca, A.J. Accelerated decomposition kinetics of ammonium perchlorate via conformal graphene coating. Chem. Mater. 2021, 33, 9608–9617. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, C.; Liu, X.; Chen, W.; Tang, Q.; Li, Y. Tuning thermal decomposition of ammonium perchlorate by nanoporous Gd2O3 for improved safety and enhanced propellant efficiency. J. Rare Earths 2020, 38, 108–112. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, P.; Zhou, Y.; Yuan, B.; Zhan, F.; Gao, J.; Liang, T.; Ren, Z.; Hu, M.; Zhang, Y.; et al. Structural design and evolution of one-dimensional Cu hydrogen-bonded organic framework for catalyzing the rapid decomposition of ammonium perchlorate. J. Hazard. Mater. 2025, 486, 136961. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, J.; Yue, S.; Zhou, Y.; Yuan, B.; Zhou, P.; Ao, W.; Huang, C. Porous Cu2O hierarchical structure for promoting the decomposition of ammonium perchlorate and its combustion properties. Fuel 2026, 405, 136781. [Google Scholar] [CrossRef]
- Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Computation. Chem. 1997, 18, 393–402. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 1970, 2, 301–324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Tang, X.; Fu, L.; Li, J.; Zheng, Z.; Ding, C.; Zhang, Y.; Huang, C. Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate. Catalysts 2025, 15, 882. https://doi.org/10.3390/catal15090882
Ji H, Tang X, Fu L, Li J, Zheng Z, Ding C, Zhang Y, Huang C. Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate. Catalysts. 2025; 15(9):882. https://doi.org/10.3390/catal15090882
Chicago/Turabian StyleJi, Hongfeng, Xiaolin Tang, Lin Fu, Junyu Li, Zeyu Zheng, Chongtao Ding, Yifu Zhang, and Chi Huang. 2025. "Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate" Catalysts 15, no. 9: 882. https://doi.org/10.3390/catal15090882
APA StyleJi, H., Tang, X., Fu, L., Li, J., Zheng, Z., Ding, C., Zhang, Y., & Huang, C. (2025). Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate. Catalysts, 15(9), 882. https://doi.org/10.3390/catal15090882