Microwave-Assisted Synthesis of BiOI for Solar-Driven Environmental Remediation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of BiOI
2.1.1. Crystalline Structure and Morphology
2.1.2. Surface Composition
2.1.3. Textural and Optical Properties
Material | SBET a (m2·g−1) | Vtot b (cm3·g−1) | Vmicro c (cm3·g−1) | Vmeso d (cm3·g−1) | dpore e (nm) | Ebg f (eV) | cut-off (nm) |
---|---|---|---|---|---|---|---|
BiOI | 71 | 0.183 | 0.015 | 0.168 | 10.3 | 1.95 | 632 |
TiO2 P25 | 54 g | 0.100 g | -- | -- | 8.6 | 3.00 | 385 |
2.2. Photocatalytic Activity
3. Materials and Methods
3.1. Synthesis of BiOI Microspheres
3.2. Characterization of BiOI Microspheres
3.3. Photocatalytic Tests
3.3.1. Photocatalytic Degradation of GA in Water
3.3.2. Photo-Oxidation of Nitric Oxide (NO)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, M.; Kurniawan, T.A.; Duan, L.; Song, Y.; Hermanowicz, S.W.; Othman, M.H.D. Advances in BiOX-Based Ternary Photocatalysts for Water Technology and Energy Storage Applications: Research Trends, Challenges, Solutions, and Ways Forward. Rev. Environ. Sci. Biotechnol. 2022, 21, 331–370. [Google Scholar] [CrossRef]
- Hassan, J.Z.; Raza, A.; Qumar, U.; Li, G. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustain. Mater. Technol. 2022, 33, e00478. [Google Scholar] [CrossRef]
- Zhu, G.; Hojamberdiev, M.; Zhang, S.; Din, S.T.U.; Yang, W. Enhancing the visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi-metal and graphene. Appl. Surf. Sci. 2019, 467–468, 968–978. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, M.; Huang, T.; Huang, Y.; Cao, J.; Li, H.; Ho, W.; Lee, S.C. Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7−x hollow nanocubes for NOx removal. Environ. Sci. Nano 2021, 8, 1927–1933. [Google Scholar] [CrossRef]
- Nzaba, S.K.M.; Mmelesi, O.K.; Malefane, M.E.; Mafa, P.J.; Mamba, B.B.; Kuvarega, A.T. Comparative study of visible-light active BiOI and N,Pd-TiO2 photocatalysts: Catalytic ozonation for dye degradation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133167. [Google Scholar] [CrossRef]
- Huang, S.; Zhong, J.; Li, J.; Chen, J.; Xiang, Z.; Li, M.; Liao, Q. Charge separation and photocatalytic properties of BiOI prepared by ionic liquid-assisted hydrothermal method. Mater. Lett. 2016, 183, 248–250. [Google Scholar] [CrossRef]
- Zhan, F.; Wen, G.; Li, R.; Feng, C.; Liu, Y.; Liu, Y.; Zhu, M.; Zheng, Y.; Zhao, Y.; La, P. A comprehensive review of oxygen vacancy modified photocatalysts: Synthesis, characterization, and applications. Phys. Chem. Chem. Phys. 2024, 26, 11182–11207. [Google Scholar] [CrossRef]
- Castillo-Cabrera, G.X.; Espinoza-Montero, P.J.; Alulema-Pullupaxi, P.; Mora, J.R.; Villacís-García, M.H. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front. Chem. 2022, 10, 900622. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Levchuk, I.; Ibañez, P.F.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewater. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yao, H.; Dang, L.; Li, Z. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A Chem. 2011, 334, 116–122. [Google Scholar] [CrossRef]
- Sun, L.; Xiang, L.; Zhao, X.; Jia, C.-J.; Yang, J.; Jin, Z.; Cheng, X.; Fan, W. Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: Key role of crystal facet combination. ACS Catal. 2015, 5, 3540–3551. [Google Scholar] [CrossRef]
- Narenuch, T.; Senasu, T.; Chankhanittha, T.; Nanan, S. Sunlight-Active BiOI Photocatalyst as an Efficient Adsorbent for the Removal of Organic Dyes and Antibiotics from Aqueous Solutions. Molecules 2021, 26, 5624. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, T.-T.; Ren, H.-T.; Zhang, X.; Shen, B.; Lin, J.-H.; Lou, C.-W. Construction of BiOI/TiO2 Flexible and Hierarchical S-Scheme Heterojunction Nanofibers Membranes for Visible-Light-Driven Photocatalytic Pollutants Degradation. Sci. Total Environ. 2022, 806, 150698. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, T.; Li, K.; Huang, P.; Li, W.; Zhuo, Y.; Liu, K.; Yang, Z.; Han, D. Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism. Molecules 2024, 29, 5418. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; García, A.; Park, S.-E. Ti-Containing Mesoporous Silica for Methylene Blue Photodegradation. Appl. Catal. A Gen. 2011, 393, 359–366. [Google Scholar] [CrossRef]
- Rangel-Mendez, J.R.; Matos, J.; Cházaro-Ruiz, L.F.; González-Castillo, A.C.; Barrios-Yáñez, G. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dot sensitized solar cells. Appl. Surf. Sci. 2018, 434, 744–755. [Google Scholar] [CrossRef]
- Chin, C.D.-W.; Treadwell, L.J.; Wiley, J.B. Microwave synthetic routes for shape-controlled catalyst nanoparticles and nanocomposites. Molecules 2021, 26, 3647. [Google Scholar] [CrossRef]
- Dai, W.-W.; Zhao, Z.-Y. Structural and electronic properties of low-index stoichiometric BiOI surfaces. Mater. Chem. Phys. 2017, 193, 164–176. [Google Scholar] [CrossRef]
- Niu, J.; Dai, P.; Wang, K.; Zhang, Z.; Zhang, Q.; Yao, B.; Yu, X. Microwave-assisted synthesis of highly efficient α-Fe2O3/BiOI composites and its performance in photocatalytic degradation of organic pollutants. Adv. Powder Technol. 2020, 31, 2327–2336. [Google Scholar] [CrossRef]
- Jamil, S.; Sabir, M.I.; Jing, X.; Wang, J.; Ge, L.; Wang, J.; Zhang, M. Microwave assisted solvothermal synthesis of magnetic Fe3O4 micro spheres and spherical aggregates at low temperature. Integr. Ferroelectr. 2011, 127, 193–198. [Google Scholar] [CrossRef]
- Rodrigues, R.A.; Machado de Campos, M.B.; Tonello, P.S. Degradation of Phenolic Compounds and Organic Matter from Real Winery Wastewater by Fenton and Photo-Fenton Processes Combined with Ultrasound. Water 2025, 17, 763. [Google Scholar] [CrossRef]
- Gómez-García, M.A.; Pitchon, V.; Kiennemann, A. Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 2005, 31, 445–467. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhao, H.; Dai, Z.; Cheng, G.; Chen, R. Mediation of valence band maximum of BiOI by Cl incorporation for improved oxidation power in photocatalysis. Ind. Eng. Chem. Res. 2016, 55, 4969–4978. [Google Scholar] [CrossRef]
- Long, Y.; Wang, Y.; Zhang, D.; Ju, P.; Sun, Y. Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria. J. Colloid Interface Sci. 2016, 481, 47–56. [Google Scholar] [CrossRef]
- Liao, H.; Li, Z.; Luo, L.; Zhong, J.; Li, J. Water hyacinth powder-assisted preparation of defects-rich and flower-like BiOI/Bi5O7I heterojunctions with excellent visible light photocatalytic activity. Surf. Interfaces 2021, 27, 101470. [Google Scholar] [CrossRef]
- Khan, A.; Gao, L.; Numan, A.; Khan, S.; Hussain, I.; Sajjad, M.; Zhao, G. Recent advancements in the tailoring of nanomaterials via microwave-assisted synthesis: A comprehensive review. Crit. Rev. Solid State Mater. Sci. 2025, 1–24. [Google Scholar] [CrossRef]
- Praxedes, F.R.; Nobre, M.A.L.; Olean-Oliveira, A.; Portugal, M.L.; Poon, P.S.; Teixeira, M.F.S.; Lanfredi, S.; Matos, J. Photoelectrocatalytic oxygen evolution reaction on visible-light irradiated W-doped alkali niobate-based perovskite. Appl. Catal. A Gen. 2023, 659, 119171. [Google Scholar] [CrossRef]
- Praxedes, F.R.; Nobre, M.A.L.; Lanfredi, S.; Poon, P.S.; Matos, J. Influence of the structural properties and W/Nb ratio upon the photocatalytic activity of tungsten-doped potassium sodium niobate-based perovskites. Mater. Res. Bull. 2025, 184, 113256. [Google Scholar] [CrossRef]
- Luo, L.; Zhong, J.; Li, J. Photocatalytic property of MWCNTs/BiOI with rich oxygen vacancies. Mater. Res. Bull. 2022, 150, 111763. [Google Scholar] [CrossRef]
- Hitha, H.; Mathew, J.; Jose, J.A.; Kuriakose, S.; Varghese, T. Influence of Bi3+ doping on structural, optical, and photocatalytic degradation properties of NiWO4 nanocrystals. J. Solid State Chem. 2021, 295, 121892. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Y.; Zhang, P.; He, C.; Deng, J.; Ding, S.; Shi, W. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur-terminated (001) chalcopyrite surface. Appl. Surf. Sci. 2016, 390, 412–421. [Google Scholar] [CrossRef]
- Lan, H.; Zhang, G.; Zhang, H.; Liu, H.; Liu, R.; Qu, J. Solvothermal synthesis of BiOI flower-like microspheres for efficient photocatalytic degradation of BPA under visible light irradiation. Catal. Commun. 2017, 98, 9–12. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y. XPS characterization of BiOI: Insights into the oxidation states of bismuth and iodine. J. Surf. Sci. Technol. 2022, 60, 250–261. [Google Scholar]
- Lee, W.W.; Lu, C.-S.; Chuang, C.-W.; Chen, Y.-J.; Fu, J.-Y.; Siao, C.-W.; Chen, C.-C. Synthesis of bismuth oxyiodides and their composites: Characterization, photocatalytic activity, and degradation mechanisms. RSC Adv. 2015, 5, 23450–23463. [Google Scholar] [CrossRef]
- Yan, T.; Sun, M.; Liu, H.; Wu, T.; Liu, X.; Yan, Q.; Xu, W.; Du, B. Fabrication of hierarchical BiOI/Bi2MoO6 heterojunction for degradation of bisphenol A and dye under visible light irradiation. J. Alloys Compd. 2015, 634, 223–231. [Google Scholar] [CrossRef]
- Sultana, S.; Mansingh, S.; Parida, K.M. Facile Synthesis of CeO2 Nanosheets Decorated upon BiOI Microplate: A Surface Oxygen Vacancy Promoted Z-Scheme-Based 2D-2D Nanocomposite Photocatalyst with Enhanced Photocatalytic Activity. J. Phys. Chem. C 2018, 122, 808–819. [Google Scholar] [CrossRef]
- Ajin, V.C.A.; Lenus, A.J. Engineering the Role of Oxygen Vacancies in Photocatalysts for Environmental Remediation and Energy Conversion Applications: A Comprehensive Review. Mater. Sci. Semicond. Process. 2025, 197, 109705. [Google Scholar] [CrossRef]
- Smal, I.M.; Yu, Q.; Veneman, R.; Fränzel-Luiten, B.; Brilman, D.W.F. TG-FTIR Measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening. Energy Procedia 2014, 63, 6834–6841. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Thommes, M.; Smarsly, B.; Groenewolt, M.; Ravikovitch, P.I.; Neimark, A.V. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 2006, 22, 756–764. [Google Scholar] [CrossRef]
- Helmich, M.; Luckas, M.; Pasel, C.; Bathen, D. Characterization of microporous activated carbons using molecular probe method. Carbon 2014, 74, 22–31. [Google Scholar] [CrossRef]
- Matos, J.; Samudio-González, D.; Blanco, E.; Poon, P.S.; Escalona, N. Alkali-driven selectivity of products on carbon-supported Ni-based catalysts during the HDO of guaiacol. Fuel 2024, 374, 132442. [Google Scholar] [CrossRef]
- Wang, X.; Pehkonen, S.O.; Rämö, J.; Väänänen, M.; Highfield, J.G.; Laasonen, K. Experimental and computational studies of nitrogen doped Degussa P25 TiO2: Application to visible-light driven photo-oxidation of As(III). Catal. Sci. Technol. 2012, 2, 784–793. [Google Scholar] [CrossRef]
- Fernández de Cordoba, M.C.; Matos, J.; Montaña, R.; Poon, P.S.; Lanfredi, S.; Praxedes, F.R.; Hernández-Garrido, J.C.; Calvino, J.J.; Rodríguez-Aguado, E.; Rodríguez-Castellón, E.; et al. Sunlight photoactivity of rice husks-derived biogenic silica. Catal. Today 2019, 328, 125–135. [Google Scholar] [CrossRef]
- Pourshirband, N.; Nezamzadeh-Ejhieh, A. A Z-scheme AgI/BiOI binary nanophotocatalyst for the Eriochrome Black T photodegradation: A scavenging agents study. Mater. Res. Bull. 2022, 148, 111689. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Shi, X.; Chen, X.; Chen, X.; Zhou, S.; Lou, S. Solvothermal synthesis of BiOI hierarchical spheres with homogeneous sizes and their high photocatalytic performance. Mater. Lett. 2012, 68, 296–299. [Google Scholar] [CrossRef]
- Kwolek, P.; Szaciłowski, K. Photoelectrochemistry of n-Type Bismuth Oxyiodide. Electrochim. Acta 2013, 104, 448–453. [Google Scholar] [CrossRef]
- Dai, W.-W.; Zhao, Z.-Y. Electronic Structure and Optical Properties of BiOI as a Photocatalyst Driven by Visible Light. Catalysts 2016, 6, 133. [Google Scholar] [CrossRef]
- Lal, S.; Righetto, M.; Ulatowski, A.M.; Motti, S.G.; Sun, Z.; MacManus-Driscoll, J.L.; Hoye, R.L.Z.; Herz, L.M. Bandlike Transport and Charge-Carrier Dynamics in BiOI Films. J. Phys. Chem. Lett. 2023, 14, 6620–6629. [Google Scholar] [CrossRef]
- Song, L.; Zhang, S.; Wei, Q. Porous BiOI Sonocatalysts: Hydrothermal Synthesis, Characterization, Sonocatalytic, and Kinetic Properties. Ind. Eng. Chem. Res. 2012, 51, 1193–1197. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Hurum, D.C.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. J. Phys. Chem. B 2005, 109, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yu, J.C.; Fan, C.; Wen, H.; Hu, S. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater. Sci. Eng. B 2010, 166, 213–219. [Google Scholar] [CrossRef]
- He, R.; Cao, S.; Yu, J.; Yang, Y. Microwave-Assisted Solvothermal Synthesis of Bi4O5I2 Hierarchical Architectures with High Photocatalytic Performance. Catal. Today 2016, 264, 221–228. [Google Scholar] [CrossRef]
- Gong, J.; Imbault, A.; Farnood, R. The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination. Appl. Catal. B 2017, 204, 296–303. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Byrne, J.A.; O’Shea, K.; Entezari, M.H.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Mikhaylov, R.V.; Lisachenko, A.A.; Titov, V.V. Investigation of photostimulated oxygen isotope exchange on TiO2 Degussa P25 surface upon UV–Vis irradiation. J. Phys. Chem. C 2012, 116, 23332–23341. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Tao, H.; Liu, Y. Dynamic adsorption/desorption of NOx on MFI zeolites: Effects of relative humidity and Si/Al ratio. Nanomaterials 2023, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Arcibar-Orozco, J.; Poon, P.S.; Pecchi, G.; Rangel-Mendez, J.R. Influence of phosphorous upon the formation of DMPO-•OH and POBN-O2•¯ spin-trapping adducts in carbon-supported P-promoted Fe-based photocatalysts. J. Photochem. Photobiol. A Chem. 2020, 391, 112362. [Google Scholar] [CrossRef]
- Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C. Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach. Environ. Pollut. 2002, 120, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Shen, B.; Adwek, G.; Xiong, L.; Liu, L.; Yuan, P.; Gao, H.; Liang, C.; Guo, Q. Review on the NO Removal from Flue Gas by Oxidation Methods. J. Environ. Sci. 2021, 101, 49–71. [Google Scholar] [CrossRef]
- Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 based photocatalysts for improved air and health quality. J. Mater. 2017, 3, 3–16. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Edelmannová, M.; Reli, M.; Kočí, K.; Papailias, I.; Todorova, N.; Giannakopoulou, T.; Dallas, P.; Devlin, E.; Ioannidis, N.; Trapalis, C. Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts. Photochem 2021, 1, 462–476. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 2005, 82, 1–78. [Google Scholar] [CrossRef]
- Xie, W.; Li, R.; Xu, Q. Enhanced Photocatalytic Activity of Se-Doped TiO2 under Visible Light Irradiation. Sci. Rep. 2018, 8, 8752. [Google Scholar] [CrossRef]
- Niu, J.; Dai, P.; Zhang, Q.; Yao, B.; Yu, X. Microwave-assisted solvothermal synthesis of novel hierarchical BiOI/rGO composites for efficient photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2018, 430, 165–175. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, J.; Di, J.; Zhao, D.; Ji, M.; Xia, J.; Li, H. Facile microwave-assisted ionic liquid synthesis of sphere-like BiOBr hollow and porous nanostructures with enhanced photocatalytic performance. Green Energy Environ. 2017, 2, 124–133. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials 2020, 10, 124. [Google Scholar] [CrossRef]
- Pawar, T.J.; Contreras López, D.; Olivares Romero, J.L.; Vallejo Montesinos, J. Surface modification of titanium dioxide. J. Mater. Sci. 2023, 58, 6887–6930. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, W.-D. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi2MoO6 microspheres using BiOI microspheres as self-sacrificing templates. J. Solid State Chem. 2015, 227, 247–254. [Google Scholar] [CrossRef]
- Mera, A.C.; Rodríguez, C.A.; Meléndrez, M.F.; Valdés, H. Synthesis and Characterization of BiOI Microspheres under Standardized Conditions. J. Mater. Sci. 2017, 52, 944–954. [Google Scholar] [CrossRef]
- Dong, G.; Ho, W.; Zhang, L. Photocatalytic NO Removal on BiOI Surface: The Change from Nonselective Oxidation to Selective Oxidation. Appl. Catal. B Environ. 2015, 168–169, 490–496. [Google Scholar] [CrossRef]
- Nie, Q.; Jia, L.; Zhang, G.; Xie, J.; Liu, J. Micro-spherical BiOI photocatalysts for efficient degradation of residual xanthate and gaseous nitric oxide. Nanomaterials 2024, 14, 576. [Google Scholar] [CrossRef]
- Mera, A.C.; Martínez-de la Cruz, A.; Pérez-Tijerina, E.; Meléndrez, M.F.; Valdés, H. Nanostructured BiOI for air pollution control: Microwave-assisted synthesis, characterization and photocatalytic activity toward NO transformation under visible light irradiation. Mater. Sci. Semicond. Process 2018, 88, 20–27. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, G.; Gondal, M.A.; Liu, Y.; Zhang, X.; Chang, X.; Li, N. Rapid adsorption properties of flower-like BiOI nanoplates synthesized via a simple EG-assisted solvothermal process. J. Nanopart. Res. 2013, 15, 1773. [Google Scholar] [CrossRef]
- Nava Núñez, M.Y.; Martínez-de la Cruz, A.; López-Cuéllar, E. Preparation of BiOI microspheres in 2-propanol/ethylene glycol by microwave method with high visible-light photocatalytic activity. Res. Chem. Intermed. 2019, 45, 1475–1492. [Google Scholar] [CrossRef]
- Ao, Y.; Xu, J.; Wang, P.; Wang, C.; Hou, J.; Qian, J. Enhanced Photocatalytic Activity of BiOI Microspheres by Coupling with Graphene Oxide under Visible Light Irradiation. Appl. Surf. Sci. 2013, 276, 390–396. [Google Scholar] [CrossRef]
- Montoya-Zamora, J.M.; Martínez-de la Cruz, A.; López-Cuéllar, E. Synthesis of BiOI photocatalyst by microwave method using EDTA as retarder of the reaction. Res. Chem. Intermed. 2017, 43, 2545–2563. [Google Scholar] [CrossRef]
- Hu, P.; Hou, D.; Shi, H.; Chen, C.; Huang, Y.; Hu, X. Microwave-Assisted Synthesis of Self-Assembled BiO1.84H0.08 Hierarchical Nanostructures as a New Photocatalyst. Appl. Surf. Sci. 2014, 319, 244–249. [Google Scholar] [CrossRef]
- Gulab, H.; Fatima, N.; Tariq, U.; Gohar, O.; Irshad, M.; Khan, M.Z.; Saleem, M.; Ghaffar, A.; Hussain, M.; Jan, A.K.; et al. Advancements in Zinc Oxide Nanomaterials: Synthesis, Properties, and Diverse Applications. Nano-Struct. Nano-Objects 2024, 39, 101271. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Pereira, L.O.; Lelo, R.V.; Coelho, G.C.M.; Magalhães, F. Degradation of textile dyes from synthetic and wastewater samples using TiO2/C/Fe magnetic photocatalyst and TiO2. J. Iran. Chem. Soc. 2019, 16, 2281–2289. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, J.; Xia, G.; Tang, Y.; Wu, Z.; Yao, J. Competitive Coordination Initiated One-Pot Synthesis of Core–Shell Bi-MOF@BiOX (X = I, Br and Cl) Heterostructures for Photocatalytic Elimination of Mixed Pollutants. Sep. Purif. Technol. 2023, 316, 123819. [Google Scholar] [CrossRef]
- Fang, B.; Qiu, J.; Xia, G.; Wang, M.; Dai, D.; Tang, Y.; Li, Y.; Yao, J. Carboxylated Cellulose-Derived Carbon Mediated Flower-Like Bismuth Oxyhalides for Efficient Cr(VI) Reduction under Visible Light. J. Colloid Interface Sci. 2025, 678, 125–133. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, C.; Chen, R.; Wang, J.; Dong, F.; Li, J.; Sun, Y. Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO2 p–n Heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 43741–43749. [Google Scholar] [CrossRef]
- Das, T.K.; Jesionek, M.; Mistewicz, K.; Nowacki, B.; Kępińska, M.; Zubko, M.; Godzierz, M.; Gawron, A. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications. Int. J. Mol. Sci. 2024, 25, 10265. [Google Scholar] [CrossRef]
- Mera, A.C.; Moreno, Y.; Contreras, D.; Escalona, N.; Meléndrez, M.F.; Mangalaraja, R.V.; Mansilla, H.D. Improvement of the BiOI Photocatalytic Activity Optimizing the Solvothermal Synthesis. Solid State Sci. 2017, 63, 84–92. [Google Scholar] [CrossRef]
- Nava-Núñez, M.Y.; Jimenez-Relinque, E.; Martínez-de la Cruz, A.; Castellote, M. Photocatalytic NOx Removal in Bismuth-Oxyhalide (BiOX, X = I, Cl) Cement-Based Materials Exposed to Outdoor Conditions. Catalysts 2022, 12, 982. [Google Scholar] [CrossRef]
Catalysts | Target Molecule | kapp (min−1) | R2kapp | IF a |
---|---|---|---|---|
TiO2 P25 | GA | 0.101 | 0.998 | 1.0 |
NO | 0.066 | 0.972 | 1.0 | |
BiOI | GA | 0.188 | 0.941 | 1.9 |
NO | 0.230 | 0.970 | 3.5 |
Synthesis Parameters (Time (min)/Temperature (°C)) | Target Pollutant | Reaction Time (min) | Light Source | Catalyst ppm | Photocatalytic Conversion (%) | Reference |
---|---|---|---|---|---|---|
4/126 | GA | 10 | UV–Vis | 320 | 86 | This work |
4/126 | NO | 5 | UV–Vis | 400 | 65 | This work |
1080/126 | GA | 30 | UV–Vis | 100 | 60 | [77] |
720/160 | NO | 35 | Vis | 150 | 60 | [78] |
1080/160 | NO | 30 | Vis | 100 | 38 | [79] |
15/126 | NO | 30 | Vis | 100 | 61 | [80] |
480/170 | RhB | 240 | Vis | 250 | 80 | [81] |
20/160 | NO | 30 | Vis | 100 | 82 | [82] |
Property | BI [This Work] | BiOI [77] | BiOI [78] | BiOI [79] | BiOI [80] | BiOI [81] | BiOI [82] |
---|---|---|---|---|---|---|---|
Crystalline phase | Tet. | Tet. | Hex. | Tet. | Tet. | Hex. | Tet. |
Morphology | MS | MS | MS | MS | MS | MS | MS |
Average size (μm) | 2.8 | 3.3 | 1.0–3.0 | 2.0–4.0 | NR | 3.0–5.0 | 1.0–1.5 |
BET surface area (m2/g) | 71 | 47 | NR | 61 | 76 | 24 | 57 |
Average pore diameter (nm) | 10 | 11 | NR | 5 | 14 | 30 | 7 |
Eg (eV) | 1.9 | 1.9 | 1.8 | 1.8 | 1.9 | 1.7 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mera, A.C.; Matos, J.; Araya Vera, C.; Alfonso Alvarez, A. Microwave-Assisted Synthesis of BiOI for Solar-Driven Environmental Remediation. Catalysts 2025, 15, 868. https://doi.org/10.3390/catal15090868
Mera AC, Matos J, Araya Vera C, Alfonso Alvarez A. Microwave-Assisted Synthesis of BiOI for Solar-Driven Environmental Remediation. Catalysts. 2025; 15(9):868. https://doi.org/10.3390/catal15090868
Chicago/Turabian StyleMera, Adriana C., Juan Matos, Claudia Araya Vera, and Alexander Alfonso Alvarez. 2025. "Microwave-Assisted Synthesis of BiOI for Solar-Driven Environmental Remediation" Catalysts 15, no. 9: 868. https://doi.org/10.3390/catal15090868
APA StyleMera, A. C., Matos, J., Araya Vera, C., & Alfonso Alvarez, A. (2025). Microwave-Assisted Synthesis of BiOI for Solar-Driven Environmental Remediation. Catalysts, 15(9), 868. https://doi.org/10.3390/catal15090868