DFT Study on the Addition Reaction Mechanism of Phenylacetylene and NHC–Borane Catalyzed by DTBP
Abstract
1. Introduction
2. Results and Discussion
2.1. DTBP→IM1
2.2. IM1→IM2
2.3. Path a
2.3.1. Path a1
2.3.2. Path a2
2.4. Path b
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Radical-polar crossover reactions of vinylboron ate com-plexes. Science 2017, 355, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.; Mega, R.S.; Pflästerer, D.; Myers, E.L.; Aggarwal, V.K. Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters. Angew. Chem. Int. Ed. 2018, 57, 2155–2159. [Google Scholar] [CrossRef]
- Bassini, E.; Gazzotti, S.; Sannio, F.; Presti, L.L.; Sgrignani, J.; Docquier, J.D.; Grazioso, G.; Silvani, A. Isonitrile-Based Multi-component Synthesis of β-Amino Boronic Acids as β-Lactamase Inhibitors. Antibiotics 2020, 9, 21. [Google Scholar] [CrossRef]
- Dos Santos, E.M.; Silva, N.; Gonçalves, K.G.; Vale, A.A.M.; De Azevedo-Santos, A.P.S.; França, T.C.C.; LaPlante, S.R.; Resende, J.; Romeiro, N.C.; Lima, J.A.; et al. Arylboronic acids as safe and specific human butyrylcholines-terase inhibitors. J. Mol. Struct. 2023, 1290, 135932. [Google Scholar] [CrossRef]
- Tan, J.; Cognetta, A.B., III; Diaz, D.B.; Lum, K.M.; Adachi, S.; Kundu, S.; Cravatt, B.F.; Yudin, A.K. Multicomponent mapping of boron chemotypes furnishes selective enzyme inhibitors. Nat. Commun. 2017, 8, 1760. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Zhang, J.; Krummenacher, I.; Braunschweig, H.; Lin, Z. DFT Studies on the Reactions of Boroles with Alkynes. Chem. Eur. J. 2018, 24, 9612–9621. [Google Scholar] [CrossRef]
- Procter, R.J.; Uzelac, M.; Cid, J.; Rushworth, P.J.; Ingleson, M.J. Low-Coordinate NHC–Zinc Hydride Complexes Catalyze Alkyne C–H Borylation and Hydroboration Using Pinacolborane. ACS Catal. 2019, 9, 5760–5771. [Google Scholar] [CrossRef]
- Romero, E.A.; Jazzar, R.; Bertrand, G. (CAAC)CuX-catalyzed hydroboration of terminal alkynes with pinacolborane directed by the X-ligand. J. Organomet. Chem. 2016, 829, 11–13. [Google Scholar] [CrossRef]
- Ito, S.; Fukazawa, M.; Takahashi, F.; Nogi, K.; Yorimitsu, H. Sodium-Metal-Promoted Reductive 1,2-syn-Diboration of Al-kynes with Reduction-Resistant Trimethoxyborane. Bull. Chem. Soc. Jpn. 2020, 93, 1171–1179. [Google Scholar]
- Dong, W.K.; Liu, Z.M.; Zhang, M.H.; Zhang, Z.Y.; Wei, Y.H.; Liu, G.L.; Zhao, W.X. Copper-Catalyzed Regioselective Dihy-droboration of Alkynes to Construct gem-Diborylalkanes. Org. Lett. 2025, 27, 3101–3106. [Google Scholar] [CrossRef]
- Zhong, M.L.; Zhang, J.; Lu, Z.P.; Xie, Z.W. Diboration of alkenes and alkynes with a carborane-fused four-membered bora-cycle bearing an electron-precise B-B bond. Dalton Trans. 2021, 50, 17150–17155. [Google Scholar]
- Zhou, J.; Lee, C.I.; Ozerov, O.V. Computational Study of the Mechanism of Dehydrogenative Borylation of Terminal Al-kynes by SiNN Iridium Complexes. ACS Catal. 2018, 8, 536–545. [Google Scholar]
- Mao, L.; Bose, S.K. Hydroboration of Enynes and Mechanistic Insights. Adv. Synth. Catal. 2020, 362, 4174–4188. [Google Scholar] [CrossRef]
- Huang, Z.; Zuo, Z.; Wen, H.; Liu, G. Cobalt-Catalyzed Hydroboration and Borylation of Alkenes and Alkynes. Synlett 2018, 29, 1421–1429. [Google Scholar] [CrossRef]
- Foley, B.J.; Bhuvanesh, N.S.; Zhou, J.; Ozerov, O.V. Combined Experimental and Computational Studies of the Mechanism of Dehydrogenative Borylation of Terminal Alkynes Catalyzed by PNP Complexes of Iridium. ACS Catal. 2020, 10, 9824–9836. [Google Scholar] [CrossRef]
- Chen, Z.S.; Nie, B.; Li, X.N.; Liu, T.; Li, C.S.; Huang, J.Z. Ligand-controlled regiodivergent Ni-catalyzed hydroboration/carboboration of internal alkynes with B2pin2. Chem. Sci. 2024, 15, 2236–2242. [Google Scholar] [CrossRef]
- Chen, J.P.; Shen, X.Z.; Lu, Z. Cobalt-Catalyzed Markovnikov-Type Selective Hydroboration of Terminal Alkynes. Angew. Chem. Int. Ed. 2021, 60, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Corpas, J.; Mauleón, P.; Arrayas, R.G.; Carretero, J.C. Transition-Metal-Catalyzed Functionalization of Alkynes with Or-ganoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal. 2021, 11, 7513–7551. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, J.; Huang, Z. Cobalt-Catalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity. Angew. Chem. Int. Ed. 2016, 128, 10997–11001. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, S. Trans-Aminoboration across Internal Alkynes Catalyzed by B(C6F5)3 for the Synthesis of Borylated In-doles. Org. Lett. 2017, 19, 1462–1465. [Google Scholar] [CrossRef]
- Fasano, V.; Radcliffe, J.E.; Ingleson, M.J. Mechanistic Insights into the B(C6F5)3-Initiated Aldehyde-Aniline-Alkyne Reaction to Form Substituted Quinolines. Organometallics 2017, 36, 1623–1629. [Google Scholar] [CrossRef]
- Liu, Y.L.; Kehr, G.; Daniliuc, C.G.; Erker, G. Metal-Free Arene and Heteroarene Borylation Catalyzed by Strongly Electro-philic Bis-boranes. Chem. Eur. J. 2017, 23, 12141–12144. [Google Scholar] [CrossRef]
- Teng, S.; Zhou, J.S.; Huang, W. New chemistry of alkynyl trifluoroborates under transition metal catalyst-free conditions. Org. Chem. Front. 2024, 11, 5985–6003. [Google Scholar] [CrossRef]
- Zhang, M.; Shan, J.R.; Xie, Y.K.; Wei, L.E.; Xiong, H.G.; Xie, G.N.; Qi, T.; Shi, Q.Q.; Houk, K.N.; Huang, H. General Base-Free Suzuki-Miyaura Cross-Coupling Reaction via Electrophilic Substitution Transmetalation. Angew. Chem. Int. Ed. 2025, 11, e202512496. [Google Scholar]
- Glasspoole, B.W.; Ghozati, K.; Moir, J.; Crudden, C.M. Suzuki–Miyaura cross-couplings of secondary allylic boronic esters. Chem. Commun. 2011, 48, 1230–1232. [Google Scholar] [CrossRef]
- Wen, Y.; Deng, C.; Xie, J.; Kang, X. Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes. Molecules 2018, 24, 101. [Google Scholar] [CrossRef]
- Vuckovic, S.; Song, S.; Kozlowski, J.; Sim, E.; Burke, K. Density Functional Analysis: The Theory of Density-Corrected DFT. J. Chem. Theory Comput. 2019, 15, 6636–6646. [Google Scholar] [CrossRef]
- Butera, V. Density functional theory methods applied to homogeneous and heterogeneous catalysis: A short review and a practical user guide. Phys. Chem. Chem. Phys. 2024, 26, 7950–7970. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, H. Comparison of DFT methods for molecular structure and vibration spectra of ofloxacin calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 303–309. [Google Scholar] [CrossRef]
- Bartlett, R.J. Adventures in DFT by a wavefunction theorist. J. Chem. Phys. 2019, 151, 19. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chem. Int. Ed. 2022, 61, 27. [Google Scholar] [CrossRef]
- Shimoi, M. Radical Hydroboration of Alkynes with N-Heterocyclic Carbene Boranes. Chem. Soc. Jpn. 2018, 57, 9485–9490. [Google Scholar]
- Poredoš, T.; Trampuž, M.; Gornik, T.; Naveršnik, K.; Tisnikar, M.S.; Pirc, S.; Časar, Z. Why and How to Control P-Chirality in Phosphorothioated Therapeutic Oligonucleotides: Analytical Challenges Associated with Determination of Stereochemical Composition. Org. Process. Res. Dev. 2024, 28, 4194–4214. [Google Scholar] [CrossRef]
- Sha, Y.; Zhang, Y.; Qiu, Y.; Xu, Z.; Li, S.; Feng, X.; Wang, M.; Xu, H. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB. J. Agric. Food Chem. 2018, 67, 282–290. [Google Scholar] [CrossRef]
- Xie, H.; Li, Y.; Wang, L.V.; Kuang, J.; Lei, Q.; Fang, W. Why different ligands can control stereochemistry selectivity of Ni-catalyzed Suzuki–Miyaura cross-coupling of benzylic carbamates with arylboronic esters: A mechanistic study. Dalton Trans. 2017, 46, 13010–13019. [Google Scholar] [CrossRef]
- Mann, S.G.A.; Paz-Galeano, M.; Shahsavarani, M.; Perley, J.O.; Guo, J.; Garza-Garcia, J.J.O.; Qu, Y. Stereochemical insights into sarpagan and akuammiline alkaloid biosynthesis. New Phytol. 2025, 247, 1335–1351. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, D.; Ronson, T.K.; Tarzia, A.; Lu, Z.; Jelfs, K.E.; Nitschke, J.R. Sterics and Hydrogen Bonding Control Stereochemistry and Self-Sorting in BINOL-Based Assemblies. J. Am. Chem. Soc. 2021, 143, 9009–9015. [Google Scholar] [CrossRef]
- Bismillah, A.; Johnson, T.; Hussein, B.; Turley, A.; Wong, H.C.; Aguilar, J.; Yufit, D.; McGonigal, P. Control of dynamic sp3-C stereochemistry. Nat. Chem. 2023, 15, 615–624. [Google Scholar] [CrossRef]
- Nakamura, K.; Kitayama, T.; Inoue, Y.; Ohno, A. Stereochemical Control in Microbial Reduction. 12. (S)-4-Nitro-2-butanol as a Source to Synthesize Natural Products. Bull. Chem. Soc. Jpn. 1990, 63, 91–96. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.C.; Scalmani, J.R.; Barone, G.; Mennucci, V.; Peters-son, B.; Nakatsuji, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2007. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Contin-uum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Hou, X.-X.; Wei, D. Mechanism and Origin of Stereoselectivity for the NHC-Catalyzed Desymmetrization Reaction for the Synthesis of Axially Chiral Biaryl Aldehydes. J. Org. Chem. 2024, 89, 3133–3142. [Google Scholar] [CrossRef]
- Jia, J.J.; Wang, Q.Q.; Li, J.Y.; Xu, Z.W.; Li, H.; Wei, D.H.; Yuan, B.X. Liquid-Assisted Grinding Accelerating the Defluorina-tive Coupling of gem-Difluoroalkenes under Ball-Milling Conditions. ACS Sustain. Chem. Eng. 2024, 12, 111–119. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions–the IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Legault, C.Y. CYLview, v1. 0b; Universite de Sherbrooke: Sherbrooke, QC, Canada, 2009.
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 82503. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions**. Chem. Methods. 2021, 1, 231–239. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-W.-X.; Luo, X.-M.; Zhong, L.-J.; Feng, T.-T.; Zhou, D.-G. DFT Study on the Addition Reaction Mechanism of Phenylacetylene and NHC–Borane Catalyzed by DTBP. Catalysts 2025, 15, 867. https://doi.org/10.3390/catal15090867
Wang H-W-X, Luo X-M, Zhong L-J, Feng T-T, Zhou D-G. DFT Study on the Addition Reaction Mechanism of Phenylacetylene and NHC–Borane Catalyzed by DTBP. Catalysts. 2025; 15(9):867. https://doi.org/10.3390/catal15090867
Chicago/Turabian StyleWang, Han-Wei-Xuan, Xiao-Mei Luo, Lu-Jia Zhong, Tian-Tian Feng, and Da-Gang Zhou. 2025. "DFT Study on the Addition Reaction Mechanism of Phenylacetylene and NHC–Borane Catalyzed by DTBP" Catalysts 15, no. 9: 867. https://doi.org/10.3390/catal15090867
APA StyleWang, H.-W.-X., Luo, X.-M., Zhong, L.-J., Feng, T.-T., & Zhou, D.-G. (2025). DFT Study on the Addition Reaction Mechanism of Phenylacetylene and NHC–Borane Catalyzed by DTBP. Catalysts, 15(9), 867. https://doi.org/10.3390/catal15090867