Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
- (1)
- Pretreatment of silica (SiO2) particles: crush the silica (SiO2, Q50, ASONE International, Osaka, Japan, AR, 99%) particles to 80–100 mesh (particle size range of 147–177 µm) as a support for subsequent catalyst preparation.
- (2)
- Preparation of xWO3/SiO2 series support: Taking the synthesis of 0.3 wt.% WO3/SiO2, for example, weigh 1 g of SiO2 support into a beaker. Then, dissolve 0.0042 g of (NH4) 6H2W12O40·xH2O (Aladdin Chemicals, Shanghai, China, AR, 99.5%) in 1 mL of deionized water and sonicate to prepare a homogeneous solution. Add the (NH4) 6H2W12O40 solution dropwise onto the SiO2 support while stirring continuously to ensure a uniform dispersion of the solution. After adding all the solutions dropwise, let it stand and age for 2 h, then dry the sample in an 80 °C oven for 12 h. The dried sample was then placed in a muffle furnace and heated to 500 °C at a rate of 2 °C/min for 4 h. Other xWO3/SiO2 supports with different W loading amounts (0.9, 1.8, and 3.6 wt.%) were prepared using the above method, except for the different (NH4) 6H2W12O40·xH2O values measured.
- (3)
- Preparation of pure WO3 support by (NH4) 6H2W12O40·xH2O thermal decomposition method. Specifically, a certain amount of (NH4) 6H2W12O40·xH2O in a muffle furnace, raise the temperature to 600 °C at a rate of 2 °C/min and maintain it for 4 h.
- (4)
- The preparation process of Pt-based catalysts was the same as that of xWO3/SiO2 supports, except that 1g of SiO2, WO3, and xWO3/SiO2 supports were separately weighed into beakers. Then, 0.0060 g of H12N6O6Pt (Aladdin Chemicals, Shanghai, China, Pt ≥ 50%) was added to 1 mL of deionized water. Finally, the samples were calcined at 350 °C for 5 h in a muffle furnace. Specifically, the loading amount of Pt was 0.3wt.%, and the loading amounts of W were 0.9, 1.8, and 3.6 wt.%. Pt/W ratio was taken here to simplify the sample naming, for example, 0.3 wt.% Pt-0.3 wt.% WO3/SiO2 was named Pt-WO3/SiO2, 0.3 wt.% Pt-0.9 wt.% WO3/SiO2 was named Pt-3WO3/SiO2, and so on.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, X.; Dong, Y.; Liu, J.; Gu, X.; Dai, Y.; Tang, Y. Recent Advances in Catalytic Hydroprocessing of Lignin and Plastics for Aromatic Compound Production. Green Carbon 2025, in press. [Google Scholar] [CrossRef]
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev. 2018, 118, 614–678. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Webber, M.S.; Mounfield, W.P.; Bell, D.C.; Christensen, E.; Morais, A.R.; Li, Y.; Anderson, E.M.; Heyne, J.S.; Beckham, G.T. Continuous hydrodeoxygenation of lignin to jet-range aromatic hydrocarbons. Joule 2022, 6, 2324–2337. [Google Scholar] [CrossRef]
- Prabhudesai, V.S.; Gurrala, L.; Vinu, R. Catalytic hydrodeoxygenation of lignin-derived oxygenates: Catalysis, mechanism, and effect of process conditions. Energy Fuels 2021, 36, 1155–1188. [Google Scholar] [CrossRef]
- Tang, Y.; Yan, G.; Zhang, S.; Li, Y.; Nguyen, L.; Iwasawa, Y.; Sakata, T.; Andolina, C.; Yang, J.C.; Sautet, P. Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd1 and Mo1 Single-Atom Sites. J. Am. Chem. Soc. 2024, 146, 32366–32382. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Zhao, H.; Lin, H.; Xu, K.; Xu, Y.; Tan, L.; Wu, L.; Tang, Y. In-situ studies on the synergistic effect of Pd-Mo bimetallic catalyst for anisole hydrodeoxygenation. Mol. Catal. 2022, 530, 112591. [Google Scholar] [CrossRef]
- Xu, K.; Chen, Y.; Yang, H.; Gan, Y.; Wu, L.; Tan, L.; Dai, Y.; Tang, Y. Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite. Appl. Catal. B Environ. 2024, 341, 123244. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Xu, Y.; Tang, Y. Temperature-Dependent Hydrogenation, Hydrodeoxygenation, and Hydrogenolysis of Anisole on Nickel Catalysts. Catalysts 2023, 13, 1418. [Google Scholar] [CrossRef]
- Zhu, X.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J. Catal. 2011, 281, 21–29. [Google Scholar] [CrossRef]
- Lin, H.; Sun, P.; Xu, Y.; Zong, X.; Yang, H.; Liu, X.; Zhao, H.; Tan, L.; Wu, L.; Tang, Y. Enhanced selective cleavage of aryl C-O bond by atomically dispersed Pt on α-MoC for hydrodeoxygenation of anisole. Mol. Catal. 2022, 531, 112652. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Xu, Y.; Gao, X.; Dai, Y.; Tang, Y. Palladium-incorporated α-MoC mesoporous composites for enhanced direct hydrodeoxygenation of anisole. Catalysts 2021, 11, 370. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, H.; Yang, J.; Xu, K.; Lu, X.; Yang, Y.; Lin, H.; Wu, L.; Tan, L.; Yang, G.; et al. Catalytic hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Pd-Co bimetallic catalysts supported on MoCx. Fuel 2024, 361, 130682. [Google Scholar] [CrossRef]
- Jaya, G.T.; Insyani, R.; Park, J.; Barus, A.F.; Sibi, M.G.; Ranaware, V.; Verma, D.; Kim, J. One-pot conversion of lignocellulosic biomass to ketones and aromatics over a multifunctional Cu–Ru/ZSM-5 catalyst. Appl. Catal. B Environ. 2022, 312, 121368. [Google Scholar] [CrossRef]
- Réocreux, R.; Ould Hamou, C.A.; Michel, C.; Giorgi, J.B.; Sautet, P. Decomposition mechanism of anisole on Pt (111): Combining single-crystal experiments and first-principles calculations. ACS Catal. 2016, 6, 8166–8178. [Google Scholar] [CrossRef]
- Zanuttini, M.S.; Lago, C.D.; Gross, M.S.; Peralta, M.A.; Querini, C.A. Hydrodeoxygenation of anisole with Pt catalysts. Ind. Eng. Chem. Res. 2017, 56, 6419–6431. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Liu, B.; Dong, B.; Pan, Y.; Li, Y.; Li, Y.; Guo, H.; Chai, Y.; Liu, C. Regulation of surface hydrophobicity and metal dispersion on Pt-based catalyst for the boosted hydrodeoxygenation of guaiacol into bio-hydrocarbons. Mol. Catal. 2024, 553, 113761. [Google Scholar] [CrossRef]
- Govoni, S.; Ventimiglia, A.; Ferraz, C.P.; Itabaiana, I., Jr.; Dufour, A.; Pasc, A.; Wojcieszak, R.; Dimitratos, N. Pd-Pt bimetallic catalysts for enhanced low-temperature hydrodeoxygenation of vanillin. ChemCatChem 2024, 16, e202400453. [Google Scholar] [CrossRef]
- Shivhare, A.; Hunns, J.A.; Durndell, L.J.; Parlett, C.M.; Isaacs, M.A.; Lee, A.F.; Wilson, K. Metal–Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15. ChemSusChem 2020, 13, 4945–4953. [Google Scholar] [CrossRef]
- Sarkar, A.; Sharma, S.; Balarabe, B.Y.; Vadivel, S.; Tyagi, T.; Das, D.; Kumar, S.; Puzari, A.; Paul, B. In-situ synthesis of star-shaped Ni supported on WO3 nanoparticles for selective hydrogenation of cinnamaldehyde. Int. J. Hydrogen Energy 2024, 59, 1174–1182. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.; Liu, W.; Zhao, X.; Luo, H.; Miao, G.; Wang, Z.; Li, S.; Kong, L. Synergy of metallic Pt and oxygen vacancy sites in Pt–WO 3− x catalysts for efficiently promoting vanillin hydrodeoxygenation to methylcyclohexane. Green Chem. 2022, 24, 9489–9495. [Google Scholar] [CrossRef]
- Yang, F.; Komarneni, M.R.; Libretto, N.J.; Li, L.; Zhou, W.; Miller, J.T.; Ge, Q.; Zhu, X.; Resasco, D.E. Elucidating the Structure of Bimetallic NiW/SiO2 Catalysts and Its Consequences on Selective Deoxygenation of m-Cresol to Toluene. ACS Catal. 2021, 11, 2935–2948. [Google Scholar] [CrossRef]
- Diao, X.; Ji, N.; Li, T.; Jia, Z.; Jiang, S.; Wang, Z.; Song, C.; Liu, C.; Lu, X.; Liu, Q. Rational design of oligomeric MoO3 in SnO2 lattices for selective hydrodeoxygenation of lignin derivatives into monophenols. J. Catal. 2021, 401, 234–251. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Wu, K.; Li, X.; Huang, Y.; Shen, Z.; Yang, H.; Yang, Y.; Wang, W.; Li, C. Rational design of Ni-MoO3–x catalyst towards efficient hydrodeoxygenation of lignin-derived bio-oil into naphthenes. J. Energy Chem. 2023, 84, 122–130. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, Y.; Sun, Y.; Ji, W.; Wang, L.; Lin, F.; Li, Y.; Xia, H. Synchronous Construction of Ni/CeO2/C with Double Defects as a Dual Engine for Catalytic Refinement of Lignin Oil Under Hydrogen-Free Condition. ACS Catal. 2024, 14, 17004–17013. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, W.; Zhang, W.; Li, H. Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature. Fuel 2022, 318, 123529. [Google Scholar] [CrossRef]
- Xiong, J.; Mao, S.; Luo, Q.; Ning, H.; Lu, B.; Liu, Y.; Wang, Y. Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer. Nat. Commun. 2024, 15, 1228. [Google Scholar] [CrossRef]
- Yang, M.; Wu, K.; Sun, S.; Ren, Y. Regulating oxygen defects via atomically dispersed alumina on Pt/WOx catalyst for enhanced hydrogenolysis of glycerol to 1, 3-propanediol. Appl. Catal. B Environ. Energy 2022, 307, 121207. [Google Scholar] [CrossRef]
- Liao, H.; Tao, X.; Wu, L.; Tang, Y.; Wang, P.; Tan, L. Anchoring Pt sites via chemical confining functional ZnOx islands in propane dehydrogenation. Fuel 2024, 369, 131730. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, J.; Li, X.; Wang, S.; Tan, H.; Ouyang, X. Boosting the hydrodeoxygenation of PET waste to cycloalkanes by electron transfer and hydrogen spillover in HxWO3−y incorporated dendritic fibrous nanosilica supported Ni catalysts. Green Chem. 2025, 27, 4621–4631. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, S.; Lou, S.; Liu, K.; Meng, X.; Liu, N.; Shi, L. Supported Ni-W bimetallic catalysts for hydrogenation of poly-alpha-olefins synthetic base oil. Catal. Lett. 2024, 154, 5732–5744. [Google Scholar] [CrossRef]
- Bi, W.; Wang, J.; Zhang, R.; Ge, Q.; Zhu, X. Tuning interfacial sites of WOx/Pt for enhancing reverse water gas shift reaction. ACS Catal. 2024, 14, 11205–11217. [Google Scholar] [CrossRef]
- An, Z.; Ma, N.; Xu, Y.; Yang, H.; Zhao, H.; Wu, L.; Tan, L.; Zou, C.; Meng, F.; Zhang, B. Shape dependency of CO2 hydrogenation on ceria supported singly dispersed Ru catalysts. J. Catal. 2024, 429, 115245. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Wang, C.; Fang, W.; Liu, P.; Hui, Y.; Li, H.; Zhou, H.; Xiao, F.-S. Tungsten Species on Beta Zeolite with Abundant Silanol Nests for Efficient Olefin Metathesis. Chem Bio Eng. 2025, 2, 485–492. [Google Scholar] [CrossRef]
- Hu, B.; Liu, H.; Tao, K.; Xiong, C.; Zhou, S. Highly active doped mesoporous KIT-6 catalysts for metathesis of 1-butene and ethene to propene: The influence of neighboring environment of W species. J. Phys. Chem. C 2013, 117, 26385–26395. [Google Scholar] [CrossRef]
- Briot, E.; Piquemal, J.-Y.; Vennat, M.; Brégeault, J.-M.; Chottard, G.; Manoli, J.-M. Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion. J. Mater. Chem. 2000, 10, 953–958. [Google Scholar] [CrossRef]
- De Lucas, A.; Valverde, J.; Canizares, P.; Rodriguez, L. Partial oxidation of methane to formaldehyde over W/SiO2 catalysts. Appl. Catal. A Gen. 1999, 184, 143–152. [Google Scholar] [CrossRef]
- Karakonstantis, L.; Matralis, H.; Kordulis, C.; Lycourghiotis, A. Tungsten–Oxo-Species Deposited on Alumina. II. Characterization and Catalytic Activity of Unpromoted W (vi)/γ-Al2O3Catalysts Prepared by Equilibrium Deposition Filtration (EDF) at Various pH’s and Non-Dry Impregnation (NDI). J. Catal. 1996, 162, 306–319. [Google Scholar] [CrossRef]
- Anh, T.N.; Hien, N.T.; Linh, D.T.H.; Hanh, N.T.; Do, L.T.; Vu, N.H.; Hoang, N.M.; Quang, D.V.; Dao, V.-D. 92.58% efficiency of solar-driven degradation of tetracycline solution by Pt/WO3 nanohybrid. Inorg. Chem. Commun. 2024, 161, 112100. [Google Scholar] [CrossRef]
- Zhou, W.; Luo, J.; Wang, Y.; Liu, J.; Zhao, Y.; Wang, S.; Ma, X. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Appl. Catal. B Environ. 2019, 242, 410–421. [Google Scholar] [CrossRef]
- García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M.; Bennici, S.; Auroux, A.; Arias, P. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. J. Catal. 2015, 323, 65–75. [Google Scholar] [CrossRef]
- Santiesteban, J.; Calabro, D.; Borghard, W.; Chang, C.; Vartuli, J.; Tsao, Y.; Natal-Santiago, M.; Bastian, R. H-spillover and SMSI effects in paraffin hydroisomerization over Pt/WOx/ZrO2Bifunctional catalysts. J. Catal. 1999, 183, 314–322. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Tong, Y.; Fang, X.; Xu, J.; Jiang, D.-e.; Wang, X. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 2021, 11, 5762–5775. [Google Scholar] [CrossRef]
- Du, X.; Gao, C.; Huang, J.; Cui, Y.; Liu, S.; Wang, C. Efficient Reductive Amination of Furfural to a Primary Amine on a Pt/TiO2 Catalyst: A Manifestation of the Nanocluster Proximity Effect. ACS Catal. 2025, 15, 4654–4664. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, S.; Liu, H.; Shi, J.; Mi, J.; Liu, H.; Gong, Z.; Oliviero, L.; Maugé, F.; Li, J. Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation. Nat. Commun. 2023, 14, 3477. [Google Scholar] [CrossRef] [PubMed]
- Ranga, C.; Lødeng, R.; Alexiadis, V.I.; Rajkhowa, T.; Bjørkan, H.; Chytil, S.; Svenum, I.H.; Walmsley, J.; Detavernier, C.; Poelman, H.; et al. Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chem. Eng. J. 2018, 335, 120–132. [Google Scholar] [CrossRef]
- Sudhakar, P.; Pandurangan, A. Pt/Ni wet impregnated over Al incorporated mesoporous silicates: A highly efficient catalyst for anisole hydrodeoxygenation. J. Porous Mater. 2017, 25, 747–759. [Google Scholar] [CrossRef]
- Peters, J.E.; Carpenter, J.R.; Dayton, D.C. Anisole and Guaiacol Hydrodeoxygenation Reaction Pathways over Selected Catalysts. Energy Fuels 2015, 29, 909–916. [Google Scholar] [CrossRef]
Sample | SBET [a] (m2·g−1) | Vtotal [b] (cm3·g−1) | dmeso [a] (nm) |
---|---|---|---|
Pt/SiO2 | 65 | 0.26 | 17 |
Pt-WO3/SiO2 | 67 | 0.39 | 27 |
Pt-3WO3/SiO2 | 61 | 0.27 | 20 |
Pt-6WO3/SiO2 | 66 | 0.28 | 18 |
Pt-12WO3/SiO2 | 65 | 0.30 | 19 |
Pt/WO3 | 0.96 | 0.005 | 19 |
Sample | C-C (eV) | C=O (eV) | O-C=O (eV) |
---|---|---|---|
Pt/SiO2 | 284.8 | 286.1 | 288.6 |
Pt-WO3/SiO2 | 284.8 | 286.1 | 288.9 |
Sample | Pt0 4f(7/2) (eV) | Pt0 4f(5/2) (eV) | Pt2+ 4f(7/2) (eV) | Pt2+ 4f(5/2) (eV) | Pt4+ 4f(7/2) (eV) | Pt4+ 4f(5/2) (eV) | Pt0/(Pt0 + Ptσ+) 4f(5/2) (%) |
---|---|---|---|---|---|---|---|
Pt/SiO2 | / | / | 72.8 | 76.4 | 74.8 | 78.2 | 0 |
Pt-WO3/SiO2 | 71.3 | 74.7 | 73.0 | 76.6 | / | / | 77.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Li, J.; Ma, N.; An, Z.; Xu, Y.; Wu, L.; Tan, L.; Tang, Y. Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole. Catalysts 2025, 15, 859. https://doi.org/10.3390/catal15090859
Yan W, Li J, Ma N, An Z, Xu Y, Wu L, Tan L, Tang Y. Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole. Catalysts. 2025; 15(9):859. https://doi.org/10.3390/catal15090859
Chicago/Turabian StyleYan, Wanru, Jiating Li, Nan Ma, Zemin An, Yuanjie Xu, Lizhi Wu, Li Tan, and Yu Tang. 2025. "Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole" Catalysts 15, no. 9: 859. https://doi.org/10.3390/catal15090859
APA StyleYan, W., Li, J., Ma, N., An, Z., Xu, Y., Wu, L., Tan, L., & Tang, Y. (2025). Investigation on Pt-WO3 Catalytic Interface for the Hydrodeoxygenation of Anisole. Catalysts, 15(9), 859. https://doi.org/10.3390/catal15090859