Hydrogen Production via Dry Reforming of Methane Using a Strontium Promoter over MgO-Supported Ni Catalyst: A Cost-Effective Catalyst System
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalyst Activity
2.2. Characterization Results
3. Discussion
4. Experiment
4.1. Materials
4.2. Catalyst Preparation
4.3. Catalytic Performance Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peter, S.C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561. [Google Scholar] [CrossRef]
- Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Shamsuddin, M.R.; Asikin-Mijan, N.; Marliza, T.S.; Miyamoto, M.; Uemiya, S.; Yarmo, M.A.; Taufiq-Yap, Y.H. Promoting dry reforming of methane via bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas. RSC Adv. 2021, 11, 6667–6681. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, A.; Singh, S.A.; Reddy, B.M.; Roy, S. Integrated CO2 capture and dry reforming of CH4 to syngas: A review. Langmuir 2024, 40, 14766–14778. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Tran, A.V.; Vo, D.-V.N.; Nguyen, H.T.; Rajamohan, N.; Trinh, T.H.; Nguyen, T.L.; Le, Q.V.; Nguyen, T.M. Methane dry reforming: A catalyst challenge awaits. J. Ind. Eng. Chem. 2024, 140, 169–189. [Google Scholar] [CrossRef]
- Huang, L.; Li, D.; Tian, D.; Jiang, L.; Li, Z.; Wang, H.; Li, K. Optimization of Ni-based catalysts for dry reforming of methane via alloy design: A review. Energy Fuels 2022, 36, 5102–5151. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Zeng, C.; Sun, W.; Fan, H.; Ma, Q.; Zhao, T.-S. Recent research progress of methane dry reforming to syngas. Fuel 2025, 398, 135535. [Google Scholar] [CrossRef]
- Chen, C.; Wei, J.; Lu, Y.; Duyar, M.S.; Huang, Y.; Lin, L.; Ye, R. Confinement effects over Ni-based catalysts for methane dry reforming. Catal. Sci. Technol. 2023, 13, 6089–6101. [Google Scholar] [CrossRef]
- Kustov, A.L.; Aymaletdinov, T.R.; Shesterkina, A.A.; Kalmykov, K.B.; Pribytkov, P.V.; Mishin, I.V.; Dunaev, S.F.; Kustov, L.M. Methane dry reforming: Influence of the SiO2 and Al2O3 supports on the catalytic properties of Ni catalysts. Mendeleev Commun. 2024, 34, 221–223. [Google Scholar] [CrossRef]
- Chaudhary, K.J.; Banabdwin, K.M.; Abahussain, A.A.M.; Fakeeha, A.H.; Wazeer, I.; Abu-Dahrieh, J.K.; Hasnain Bakhtiar, S.U.; Kumar, R.; Al-Fatesh, A.S. The Role of Pore Architect, Reducibility and Silica-Alumina Ratio over Ni-Containing Molecular Sieves for Methane Partial Oxidation. Catal. Lett. 2025, 155, 93. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Muzart, J.; Sahebdelfar, S. NiO–MgO solid solution prepared by sol–gel method as precursor for Ni/MgO methane dry reforming catalyst: Effect of calcination temperature on catalytic performance. Catal. Lett. 2016, 146, 238–248. [Google Scholar] [CrossRef]
- Martra, G.; Arena, F.; Baricco, M.; Coluccia, S.; Marchese, L.; Parmaliana, A. High loading Ni/MgO catalysts. Surface characterization by IR spectra of adsorbed CO. Catal. today 1993, 17, 449–458. [Google Scholar] [CrossRef]
- Usman, M.; Daud, W.M.A.W. An investigation on the influence of catalyst composition, calcination and reduction temperatures on Ni/MgO catalyst for dry reforming of methane. RSC Adv. 2016, 6, 91603–91616. [Google Scholar] [CrossRef]
- Maina, S.C.P.; Ballarini, A.D.; Vilella, J.I.; de Miguel, S.R. Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts. Catal. Today 2020, 344, 129–142. [Google Scholar] [CrossRef]
- Li, K.; Pei, C.; Li, X.; Chen, S.; Zhang, X.; Liu, R.; Gong, J. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B Environ. 2020, 264, 118448. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Liu, J.; Xu, Y.; Lv, Y. Production of syngas via CO2 methane reforming process: Effect of cerium and calcium promoters on the performance of Ni-MSC catalysts. Int. J. Hydrogen Energy 2020, 45, 640–649. [Google Scholar] [CrossRef]
- Cho, E.H.; Park, Y.-K.; Park, K.Y.; Song, D.; Koo, K.Y.; Jung, U.; Yoon, W.R.; Ko, C.H. Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: Effect of alkaline-earth metal (Ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation. Chem. Eng. J. 2022, 428, 131393. [Google Scholar] [CrossRef]
- Zinkevich, M. Constitution of the Sr–Ni–O system. J. Solid State Chem. 2005, 178, 2818–2824. [Google Scholar] [CrossRef]
- Taherian, Z.; Gharahshiran, V.S.; Wei, X.; Khataee, A.; Yoon, Y.; Orooji, Y. Revisiting the mitigation of coke formation: Synergism between support & promoters’ role toward robust yield in the CO2 reformation of methane. Nano Mater. Sci. 2024, 6, 536–547. [Google Scholar] [CrossRef]
- Chaudhary, M.L.; Kumar, R. Doped Ceria Catalyst System: Catalyzing Carbon Monoxide Transformation (A-Review). Orient. J. Chem. 2021, 37, 1262. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Naeem, M.A.; Fakeeha, A.H.; Abasaeed, A.E. CO2 reforming of methane to produce syngas over γ-Al2O3-supported NiSr catalysts. Bull. Chem. Soc. Jpn. 2013, 86, 742–748. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Kawi, S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int. J. Hydrogen Energy 2011, 36, 14435–14446. [Google Scholar] [CrossRef]
- Song, J.H.; Han, S.J.; Yoo, J.; Park, S.; Kim, D.H.; Song, I.K. Hydrogen production by steam reforming of ethanol over Ni–X/Al2O3–ZrO2 (X = Mg, Ca, Sr, and Ba) xerogel catalysts: Effect of alkaline earth metal addition. J. Mol. Catal. A Chem. 2016, 415, 151–159. [Google Scholar] [CrossRef]
- Abahussain, A.A.M.; Al-Fatesh, A.S.; Rajput, Y.B.; Osman, A.I.; Alreshaidan, S.B.; Ahmed, H.; Fakeeha, A.H.; Al-Awadi, A.S.; El-Salamony, R.A.; Kumar, R. Impact of Sr Addition on Zirconia–Alumina-Supported Ni Catalyst for CO x-Free CH4 Production via CO2 Methanation. ACS Omega 2024, 9, 9309–9320. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; Zhou, M. Infrared Spectroscopy of [M(CO2)n] + (M = Ca, Sr, and Ba; n = 1–4) in the Gas Phase: Solvation-Induced Electron Transfer and Activation of CO2. J. Phys. Chem. A 2024, 128, 618–625. [Google Scholar] [CrossRef]
- El-Molla, S.A.; Hammed, M.N.; El-Shobaky, G.A. Catalytic conversion of isopropanol over NiO/MgO system doped with Li2O. Mater. Lett. 2004, 58, 1003–1011. [Google Scholar] [CrossRef]
- Santra, C.; Rahman, S.; Bojja, S.; James, O.O.; Sen, D.; Maity, S.; Mohanty, A.K.; Mazumder, S.; Chowdhury, B. Barium, calcium and magnesium doped mesoporous ceria supported gold nanoparticle for benzyl alcohol oxidation using molecular O2. Catal. Sci. Technol. 2013, 3, 360–370. [Google Scholar] [CrossRef]
- Titus, J.; Roussière, T.; Wasserschaff, G.; Schunk, S.; Milanov, A.; Schwab, E.; Wagner, G.; Oeckler, O.; Gläser, R. Dry reforming of methane with carbon dioxide over NiO–MgO–ZrO2. Catal. Today 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Cazzanelli, E.; Kuzmin, A.; Mariotto, G.; Mironova-Ulmane, N. Study of vibrational and magnetic excitations in NicMg1−cO solid solutions by Raman spectroscopy. J. Phys. Condens. Matter 2003, 15, 2045. [Google Scholar] [CrossRef]
- Meng, K.; Qi, Y.; Wen, L.U.; Zheyong, F.A.N.; Jinhua, F.E.I.; Zheng, X.; Wheelock, T.D. Effect of calcination temperature on characteristics and performance of Ni/MgO catalyst for CO2 reforming of toluene. Chin. J. Catal. 2012, 33, 1508–1516. [Google Scholar] [CrossRef]
- Bishop, J.L.; King, S.J.; Lane, M.D.; Brown, A.J.; Lafuente, B.; Hiroi, T.; Roberts, R.; Swayze, G.A.; Lin, J.; Sánchez Román, M. Spectral properties of anhydrous carbonates and nitrates. Earth Sp. Sci. 2021, 8, e2021EA001844. [Google Scholar] [CrossRef]
- Przekop, R.E.; Marciniak, P.; Sztorch, B.; Czapik, A.; Stodolny, M.; Martyła, A. One-pot synthesis of Al2O3-La2O2CO3 systems obtained from the metallic precursor by the sol-gel method. J. Non-Cryst. Solids 2018, 479, 105–112. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared spectrum characteristics and quantification of OH groups in coal. ACS Omega 2023, 8, 17064–17076. [Google Scholar] [CrossRef]
- Joshi, M.S.; Mohan Prabhu, K. Synthesis and characterization of ZSM-8-type zeolite crystals. Cryst. Res. Technol. 1988, 23, 561–566. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Li, G.; Zhao, Q.; Wu, X.S.; Wang, Y.; Sun, Y.; Hu, C. Synergy of oxygen vacancies and Ni0 species to promote the stability of a Ni/ZrO2 catalyst for dry reforming of methane at low temperatures. ACS Catal. 2023, 13, 6486–6496. [Google Scholar] [CrossRef]
- Jiang, Z.; Su, J.; Jones, M.O.; Shi, H.; Xiao, T.; Edwards, P.P. Catalytic Partial Oxidation of Methane over Ni-Based Catalysts Derived from Ni−Mg/Al Ternary Hydrotalcites. Energy Fuels 2009, 23, 1634–1639. [Google Scholar] [CrossRef]
- Zafarnak, S.; Rahimpour, M.R. Dry reforming of methane for CO2 conversion using sintering-resistant halloysite-supported Ni catalysts enhanced by alkaline-earth metal oxide promoters. Fuel 2025, 395, 135168. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Rajput, Y.B.; Bayazed, M.O.; Alrashed, M.M.; Abu-Dahrieh, J.K.; Elnour, A.Y.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Kumar, R. Impact of gallium loading and process conditions on H2 production from dry reforming of methane over Ni/ZrO2-Al2O3 catalysts. Appl. Catal. A Gen. 2024, 681, 119794. [Google Scholar] [CrossRef]
- Li, T.; Liang, Z.; Liu, J.; Zhang, Y.; Zhang, X.; Zhang, G. The role of cerium in CoLa bimetallic catalysts: Enhancing activation of CH4 and CO2 for improved DRM reaction. Int. J. Hydrogen Energy 2024, 61, 611–622. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, L.; Zhang, X.; Tu, B.; Ou, D.; Cheng, M. Carbonates formed during BSCF preparation and their effects on performance of SOFCs with BSCF cathode. Int. J. Hydrogen Energy 2012, 37, 19036–19044. [Google Scholar] [CrossRef]
- Nisa, K.S.; Suendo, V.; Sophiana, I.C.; Susanto, H.; Kusumaatmaja, A.; Nishiyama, N.; Budhi, Y.W. Effect of base promoter on activity of MCM-41-supported nickel catalyst for hydrogen production via dry reforming of methane. Int. J. Hydrogen Energy 2022, 47, 23201–23212. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, S.; Long, M.; Chen, D.; Duan, H.; Li, Y. Methane Chemical Looping Partial Oxidation Over NiO/Ce2 (SO4) 3-MgO Oxygen Carrier to Produce High Purity Syngas. In Proceedings of the TMS Annual Meeting & Exhibition, Orlando, FL, USA, 3–7 March 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 420–434. [Google Scholar]
- Tao, X.; Yang, C.; Huang, L.; Xu, D. DBD plasma combined with catalysts derived from NiMgAlCe hydrotalcite for CO2 reforming of CH4. Mater. Chem. Phys. 2020, 250, 123118. [Google Scholar] [CrossRef]
- Shafiei, M.; Spizzirri, P.G.; Arsat, R.; Yu, J.; Du Plessis, J.; Dubin, S.; Kaner, R.B.; Kalantar-Zadeh, K.; Wlodarski, W. Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C 2010, 114, 13796–13801. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Liu, Z.; Wang, L.; Han, P.; Xu, H.; Zhang, K.; Dong, S.; Yao, J.; Cui, G. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 2011, 21, 5430–5434. [Google Scholar] [CrossRef]
- André, L.; Abanades, S. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage. J. Energy Storage 2017, 13, 193–205. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Arafat, Y.; Kasim, S.O.; Ibrahim, A.A.; Abasaeed, A.E.; Fakeeha, A.H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 2021, 280, 119445. [Google Scholar] [CrossRef]
- Zeng, J.; Tarazkar, M.; Palmer, C.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Initial Steps in CH4 Pyrolysis on Cu and Ni. J. Phys. Chem. C 2021, 125, 18665–18672. [Google Scholar] [CrossRef]
- Wu, P.; Tao, Y.; Ling, H.; Chen, Z.; Ding, J.; Zeng, X.; Liao, X.; Stampfl, C.; Huang, J. Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study. Acs Catal. 2019, 9, 10060–10069. [Google Scholar] [CrossRef]
- Wang, H.; Li, R.; Wang, E.; Zhu, Z.; Zhang, J. CO2 capture and dissociation on novel Ni/CaO bifunctional materials: A theoretical study. Greenh. Gases Sci. Technol. 2024, 14, 411–426. [Google Scholar] [CrossRef]
- Zhu, Y.-A.; Chen, D.; Zhou, X.-G.; Yuan, W.-K. DFT studies of dry reforming of methane on Ni catalyst. Catal. Today 2009, 148, 260–267. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal. 2004, 224, 370–383. [Google Scholar] [CrossRef]
- Ríos-Escudero, Á.; Costamagna, J.; Cárdenas-Jirón, G.I. Fukui Indexes Applied to the Reduced and Nonreduced Species of the Nickel(II) Tetraazadinaphtho[14]annulene Complex and Its Protonated Derivative. J. Phys. Chem. A 2004, 108, 7253–7260. [Google Scholar] [CrossRef]
- Akpan, E.; Sun, Y.; Kumar, P.; Ibrahim, H.; Aboudheir, A.; Idem, R. Kinetics, experimental and reactor modeling studies of the carbon dioxide reforming of methane (CDRM) over a new Ni/CeO2–ZrO2 catalyst in a packed bed tubular reactor. Chem. Eng. Sci. 2007, 62, 4012–4024. [Google Scholar] [CrossRef]
- Damyanova, S.; Shtereva, I.; Pawelec, B.; Mihaylov, L.; Fierro, J.L.G. Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane. Appl. Catal. B Environ. 2020, 278, 119335. [Google Scholar] [CrossRef]
- Chein, R.Y.; Fung, W.Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy 2019, 44, 14303–14315. [Google Scholar] [CrossRef]
- Pan, C.; Guo, Z.; Dai, H.; Ren, R.; Chu, W. Anti-Sintering Mesoporous Ni–Pd Bimetallic Catalysts for Hydrogen Production via Dry Reforming of Methane; Elsevier: Amsterdam, The Netherlands, 2020; Volume 45, ISBN 0360319920. [Google Scholar]
- Mourhly, A.; Kacimi, M.; Halim, M.; Arsalane, S. New low cost mesoporous silica (MSN) as a promising support of Ni-catalysts for high-hydrogen generation via dry reforming of methane (DRM). Int. J. Hydrogen Energy 2020, 45, 11449–11459. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Siakavelas, G.; Tzounis, L.; Sebastian, V.; Monzon, A.; Baker, M.A.; Hinder, S.J.; Polychronopoulou, K.; Yentekakis, I.V.; Goula, M.A. An in depth investigation of deactivation through carbon formation during the biogas dry reforming reaction for Ni supported on modified with CeO2 and La2O3 zirconia catalysts. Int. J. Hydrogen Energy 2018, 43, 18955–18976. [Google Scholar] [CrossRef]
- Hu, X.; Jia, X.; Zhang, X.; Liu, Y.; Liu, C.J. Improvement in the activity of Ni/ZrO2 by cold plasma decomposition for dry reforming of methane. Catal. Commun. 2019, 128, 105720. [Google Scholar] [CrossRef]
- Aghamohammadi, S.; Haghighi, M.; Karimipour, S. A comparative synthesis and physicochemical characterizations of Ni/Al2O3–MgO nanocatalyst via sequential impregnation and sol–gel methods used for CO2 reforming of methane. J. Nanosci. Nanotechnol. 2013, 13, 4872–4882. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, Y.; Wang, S.; Zhao, Q.; Mao, D.; Hu, C. Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst. ACS Catal. 2018, 8, 6495–6506. [Google Scholar] [CrossRef]
- Aguiar, M.; Cazula, B.B.; Colpini, L.M.S.; Borba, C.E.; da Silva, F.A.; Noronha, F.B.; Alves, H.J. Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane. Int. J. Hydrogen Energy 2019, 44, 32003–32018. [Google Scholar] [CrossRef]
- Abasaeed, A.; Kasim, S.; Khan, W.; Sofiu, M.; Ibrahim, A.; Fakeeha, A.; Al-Fatesh, A. Hydrogen yield from CO2 reforming of methane: Impact of La2O3 doping on supported Ni catalysts. Energies 2021, 14, 2412. [Google Scholar] [CrossRef]
- Kumar, P.; Sun, Y.; Idem, R.O. Comparative study of Ni-based mixed oxide catalyst for carbon dioxide reforming of methane. Energy Fuels 2008, 22, 3575–3582. [Google Scholar] [CrossRef]
- Aghaali, M.H.; Firoozi, S. Enhancing the catalytic performance of Co substituted NiAl2O4 spinel by ultrasonic spray pyrolysis method for steam and dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 357–373. [Google Scholar] [CrossRef]
- de Melo, M.A.F.; de Medeiros, R.L.B.A.; de Macedo, H.P.; de Melo, V.R.M.; de Oliveira, Â.A.S.; de Barros, J.M.F.; de Melo, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. Int. J. Hydrogen Energy 2016, 41, 14047–14057. [Google Scholar]
- Chaudhary, K.J.; Al-Fatesh, A.S.; Ibrahim, A.A.; Osman, A.I.; Fakeeha, A.H.; Alhoshan, M.; Alarifi, N.; Ala’a, H.; Kumar, R. Enhanced hydrogen production through methane dry reforming: Evaluating the effects of promoter-induced variations in reducibility, basicity, and crystallinity on Ni/ZSM-5 catalyst performance. Energy Convers. Manag. X 2024, 23, 100631. [Google Scholar] [CrossRef]
- Rajput, Y.B.; Al-Fatesh, A.S.; Osman, A.I.; Bayazed, M.O.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Almubaddel, F.S.; Alothman, O.; Kumar, R. Enhancing hydrogen production via dry reforming of methane: Optimization of Co and Ni on scandia-ceria-zirconia supports for catalytic efficiency and economic feasibility. Fuel 2024, 378, 132843. [Google Scholar] [CrossRef]
- An, Y.; Lin, T.; Yu, F.; Yang, Y.; Zhong, L.; Wu, M.; Sun, Y. Advances in direct production of value-added chemicals via syngas conversion. Sci. China Chem. 2017, 60, 887–903. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, C.-Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Appl. Energy 2020, 258, 114078. [Google Scholar] [CrossRef]
Sample | Crystallite Size (nm) of SrCO3 | Surface Area (m2/g) | H2 Consumption (cm3/g) | Basicity (cm3/g) | Reaction Temperature (°C) | H2 Yield % * | CO Yield % * | H2/CO Ratio * | TOS (hr) |
---|---|---|---|---|---|---|---|---|---|
5Ni/MgO | - | 77.42 | 11.68 | 1.23 | 700 | 36 | 52 | 0.67 | 7 |
5Ni1Sr/MgO | 8.4 | 69.95 | 12.88 | 1.78 | 700 | 47 | 60 | 0.76 | 7 |
5Ni2Sr/MgO | 8.8 | 62.38 | 15.58 | 1.31 | 700 | 47 | 60 | 0.75 | 7 |
5Ni3Sr/MgO | 10.5 | 62.11 | 14.04 | 1.53 | 700 | 57 | 63 | 0.79 | 7 |
700 | 53 | 63 | 0.80 | 12 | |||||
800 | 85 | 88 | 0.95 | 12 | |||||
5Ni4Sr/MgO | 13.1 | 68.55 | 13.95 | 1.64 | 700 | 51 | 63 | 0.80 | 7 |
Catalyst | H2 Consumption (cm3/g STP) in First H2 TPR | H2 Consumption (cm3/g STP) in Last H2 TPR |
---|---|---|
5Ni/MgO | 6.9 | 11.7 |
5Ni1Sr/MgO | 9.0 | 12.9 |
5Ni2Sr/MgO | 12.6 | 15.6 |
5Ni3Sr/MgO | 13.9 | 14.0 |
5Ni4Sr/MgO | 16.7 | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentalib, A.S.; BaQais, A.; Ali, F.A.A.; Chaudhary, K.J.; Abahussain, A.A.M.; Jumah, A.B.; Bayazed, M.O.; Saeed, A.M.M.; Kumar, R.; Al-Fatesh, A.S. Hydrogen Production via Dry Reforming of Methane Using a Strontium Promoter over MgO-Supported Ni Catalyst: A Cost-Effective Catalyst System. Catalysts 2025, 15, 853. https://doi.org/10.3390/catal15090853
Bentalib AS, BaQais A, Ali FAA, Chaudhary KJ, Abahussain AAM, Jumah AB, Bayazed MO, Saeed AMM, Kumar R, Al-Fatesh AS. Hydrogen Production via Dry Reforming of Methane Using a Strontium Promoter over MgO-Supported Ni Catalyst: A Cost-Effective Catalyst System. Catalysts. 2025; 15(9):853. https://doi.org/10.3390/catal15090853
Chicago/Turabian StyleBentalib, Abdulaziz S., Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Kirankumar Jivabhai Chaudhary, Abdulaziz A. M. Abahussain, Abdulrahman Bin Jumah, Mohammed O. Bayazed, Alaaddin M. M. Saeed, Rawesh Kumar, and Ahmed S. Al-Fatesh. 2025. "Hydrogen Production via Dry Reforming of Methane Using a Strontium Promoter over MgO-Supported Ni Catalyst: A Cost-Effective Catalyst System" Catalysts 15, no. 9: 853. https://doi.org/10.3390/catal15090853
APA StyleBentalib, A. S., BaQais, A., Ali, F. A. A., Chaudhary, K. J., Abahussain, A. A. M., Jumah, A. B., Bayazed, M. O., Saeed, A. M. M., Kumar, R., & Al-Fatesh, A. S. (2025). Hydrogen Production via Dry Reforming of Methane Using a Strontium Promoter over MgO-Supported Ni Catalyst: A Cost-Effective Catalyst System. Catalysts, 15(9), 853. https://doi.org/10.3390/catal15090853