Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts
Abstract
1. Introduction
2. Results and Discussion
3. Experimental
3.1. Catalysts Preparation
3.2. Catalysts Characterization
3.3. Catalytic Performance Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, F. NO hydrogeneration to synthetic N2 or NH3? Int. J. Hydrogen Energy 2024, 61, 1043–1046. [Google Scholar] [CrossRef]
- Song, J.H.; Park, D.C.; You, Y.-W.; Kim, Y.J.; Lee, J.H.; Heo, I.; Kim, D.H. Promotive effects of Ba addition on lean NOx reduction by CO over IrRu/Al2O3 catalyst. Chem. Eng. J. 2023, 452, 139331. [Google Scholar] [CrossRef]
- Cui, D.; Li, Y.; Pan, K.; Liu, J.; Wang, Q.; Liu, M.; Cao, P.; Dan, J.; Dai, B.; Yu, F. NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity. Front. Chem. Sci. Eng. 2023, 17, 1973–1985. [Google Scholar] [CrossRef]
- Fu, Y.; Tian, Y.; Lin, P. A low-temperature IR spectroscopic study of selective adsorption of NO and CO on CuO/γ-Al2O3. J. Catal. 1991, 132, 85–91. [Google Scholar] [CrossRef]
- Oh, S.H. Effects of cerium addition on the CO NO reaction kinetics over alumina-supported rhodium catalysts. J. Catal. 1990, 124, 477–487. [Google Scholar] [CrossRef]
- London, J.W.; Bell, A.T. A simultaneous infrared and kinetic study of the reduction of nitric oxide by carbon monoxide over copper oxide. J. Catal. 1973, 31, 96–109. [Google Scholar] [CrossRef]
- Ou, X.; Chen, K.; Wei, L.; Deng, Y.; Li, J.; Li, B.; Dong, L. Effect of Co Doping on Magnetic and CO-SCR Properties of γ-Fe2O3. Ind. Eng. Chem. Res. 2021, 60, 5744–5757. [Google Scholar] [CrossRef]
- Pan, Y.; Li, N.; Wu, C.; Zhou, Q.; Li, K.; Li, S. Superior room-temperature efficacy of selective catalytic reduction of NOx by CO utilizing metal-modified Fe2O3 catalysts. Chem. Eng. J. 2024, 487, 150698. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, S.; Wang, Y.; Xu, W.; Gao, J.; Yu, S.; Su, F.; Zhu, T. Hollow Mn-doped CeO2@Co3O4 catalyst for NO reduction by CO. J. Catal. 2024, 430, 115311. [Google Scholar] [CrossRef]
- Pan, K.L.; Young, C.W.; Pan, G.T.; Chang, M.B. Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts. Catal. Today 2020, 348, 15–25. [Google Scholar] [CrossRef]
- Dasireddy, V.D.; Likozar, B. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT). Chem. Eng. J. 2017, 326, 886–900. [Google Scholar] [CrossRef]
- Sun, J.; Ge, C.; Yao, X.; Zou, W.; Hong, X.; Tang, C.; Dong, L. Influence of different impregnation modes on the properties of CuOCeO2/γ-Al2O3 catalysts for NO reduction by CO. Appl. Surf. Sci. 2017, 426, 279–286. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Shen, M.; Liu, D.; Wang, J.; Ding, W.; Chen, Y. Influence of supports on the activities of copper oxide species in the low-temperature NO + CO reaction. Appl. Catal. B Environ. 2001, 31, 61–69. [Google Scholar] [CrossRef]
- Kacimi, M.; Ziyad, M.; Liotta, L.F. Cu on amorphous AlPO4: Preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen. Catal. Today 2015, 241, 151–158. [Google Scholar] [CrossRef]
- Ge, C.; Liu, L.; Liu, Z.; Yao, X.; Cao, Y.; Tang, C.; Gao, F.; Dong, L. Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO. Catal. Commun. 2014, 51, 95–99. [Google Scholar] [CrossRef]
- Liu, J.; He, Y.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. Modulating active sites: A-site doped ACu-CeO2 catalyst for efficient CO-SCR of NO. Fuel 2024, 361, 130729. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Q.; Zhu, X.; Hu, Q.; Su, W.; Qian, J.; Dong, L.; Li, B.; Fan, M.; Liang, C. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction. Appl. Surf. Sci. 2016, 389, 1033–1049. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F. The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New J. Chem. 2020, 44, 709–718. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G. Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O2 over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Ma, C.; Wang, Z. Effects of the Fe/Ce ratio on the activity of CuO/CeO2–Fe2O3 catalysts for NO reduction by CO. Catal. Sci. Technol. 2018, 8, 3336–3345. [Google Scholar] [CrossRef]
- Gao, F.; Tang, Y.; Liu, J.; Pan, K.; Zhou, M.; Qian, G.; Liu, M.; Yu, F.; Dan, J.; Dai, B. Nickel foam supported CuCe mixed metal oxide as monolith catalyst for NO removal. Chem. Eng. J. 2023, 474, 145713. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Yi, H.; Liu, H.; Xiong, T.; Du, Y.; Zhou, Y.; Duan, E.; Tang, X. Strong Ir–W interaction boosts CO-SCR denitration over supported Ir-based catalysts and influential mechanism of oxygen. Sep. Purif. Technol. 2023, 325, 124684. [Google Scholar] [CrossRef]
- Li, J.; Zhu, J.; Fu, S.; Tao, L.; Chu, B.; Qin, Q.; Wang, J.; Li, B.; Dong, L. Insight into copper-cerium catalysts with different Cu valence states for CO-SCR and in-situ DRIFTS study on reaction mechanism. Fuel 2023, 339, 126962. [Google Scholar] [CrossRef]
- Tabakova, T.; Petrova, P.; Karakirova, Y.; Avdeev, G.; Kolentsova, E.; Ilieva, L. Tuning the Cu/Ce Ratio for Improved Benzene Oxidation over Gold-Promoted Alumina-Supported CuO-CeO2. Symmetry 2023, 15, 263. [Google Scholar] [CrossRef]
- Li, P.; Feng, L.; Yuan, F.; Wang, D.; Dong, Y.; Niu, X.; Zhu, Y. Effect of Surface Copper Species on NO + CO Reaction over xCuO-Ce0.9Zr0.1O2 Catalysts: In Situ DRIFTS Studies. Catalysts 2016, 6, 124. [Google Scholar] [CrossRef]
- Francisco, M.S.P.; Mastelaro, V.R.; Nascente, P.A.P.; Florentino, A.O. Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts. J. Phys. Chem. B 2001, 105, 10515–10522. [Google Scholar] [CrossRef]
- Liu, T.; Qian, J.; Yao, Y.; Shi, Z.; Han, L.; Liang, C.; Li, B.; Dong, L.; Fan, M.; Zhang, L. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: Effect of the grinding. Mol. Catal. 2017, 430, 43–53. [Google Scholar] [CrossRef]
- Wang, W.; Wu, M.; Jia, C. Preparation, Raman Spectral Characterization and Catalytic Property Evaluation of Cuo/TiO2 Catalysts for CO Oxidation. Univ. Chem. 2023, 38, 240–247. [Google Scholar] [CrossRef]
- Li, F.; Huang, W.-H.; Gong, X.-Q. Unique adsorption behaviors of NO and O2 at hydrogenated anatase TiO2(101). Chin. Chem. Lett. 2018, 29, 765–768. [Google Scholar] [CrossRef]
- Du, X.; Dai, Q.; Wei, Q.; Huang, Y. Nanosheets-assembled Ni (Co) doped CeO2 microspheres toward NO + CO reaction. Appl. Catal. A Gen. 2020, 602, 117728. [Google Scholar] [CrossRef]
- Tao, L.; Wang, J.; Qin, Q.; Chu, B.; Gao, P.; Qiu, J.; Li, Q.; Du, X.; Dong, L.; Li, B. Simple anion-modified layered double oxides use for controlling Cu valence states for low-temperature CO-SCR. Surf. Interfaces 2024, 44, 103654. [Google Scholar] [CrossRef]
- Shaaban, E.; Li, G. Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Commun. Chem. 2022, 5, 32. [Google Scholar] [CrossRef]
- Wang, H.; Dang, X.; Huang, Y.; Wang, W.; Yan, D.; Yu, X.; Ren, Y.; Qu, J. Research progress of Cu-based and Ce-based catalysts for the selective catalytic reduction of NO with CO. Surf. Interfaces 2024, 48, 104310. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Lu, C.; Zou, J.; Ruan, M.; Yin, Y.; Qing, M.; Song, Q. Enhancement of catalytic activity in NH3-SCR reaction by promoting dispersibility of CuCe/TiO2-ZrO2 with ultrasonic treatment. Ultrason. Sonochem. 2021, 72, 105466. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Z.; Yu, F.; Pan, K.; Zhao, H.; Gao, F.; Zhou, M.; Dai, B.; Dan, J. CuCeOx/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO. New J. Chem. 2022, 46, 10422–10432. [Google Scholar] [CrossRef]
- Song, Z.; Xing, Y.; Zhang, X.; Zhao, H.; Zhao, M.; Zhao, J.; Ma, Z.A.; Zhang, Q. Silicotungstic acid modified Ce-Fe-Ox catalyst for selective catalytic reduction of NOx with NH3: Effect of the amount of HSiW. Appl. Organomet. Chem. 2019, 33, e5160. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Mu, J.; Fan, S.; Wang, L.; Gan, G.; Qin, M.; Li, J.; Li, Z.; Zhang, D. Facile Design of Highly Effective CuCexCo1–xOy Catalysts with Diverse Surface/Interface Structures toward NO Reduction by CO at Low Temperatures. Ind. Eng. Chem. Res. 2019, 58, 15459–15469. [Google Scholar] [CrossRef]
- Frankcombe, T.J.; Liu, Y. Interpretation of Oxygen 1s X-ray Photoelectron Spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468–5474. [Google Scholar] [CrossRef]
- Zhang, X.; Pei, C.; Chang, X.; Chen, S.; Liu, R.; Zhao, Z.-J.; Mu, R.; Gong, J. FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2 Splitting. J. Am. Chem. Soc. 2020, 142, 11540–11549. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, P.; Gao, J.; Liu, X.; Ji, Y.; Tian, J.; Zou, Y.; Sun, Z.; Hu, Q.; Chen, G.; et al. Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO2 for low-temperature CO oxidation. Nat. Commun. 2024, 15, 6827. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, D.; Lee, M.-J.; Kim, W.-G.; Jeong, B.; Ye, B.; Kim, H.-D. Phase control of heterogeneous 1T/2H-MoS2 to improve the selective catalytic reduction activity of VMo/Ti. Surf. Interfaces 2024, 46, 103780. [Google Scholar] [CrossRef]
- Lee, G.R.; Song, K.; Hong, D.; An, J.; Roh, Y.; Kim, M.; Kim, D.; Jung, Y.S.; Park, J.Y. Unraveling oxygen vacancy-driven catalytic selectivity and hot electron generation on heterointerfaces using nanostructured platform. Nat. Commun. 2025, 16, 2909. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Tsui, L.S.; Lam, F.L.; Wu, T.; Yip, A.C. Revisiting the crucial roles of oxygen vacancies in photo/electro-catalytic degradation of aqueous organic pollutants. Appl. Catal. O Open 2024, 190, 206930. [Google Scholar] [CrossRef]
- Hiramatsu, W.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Kawada, Y.; Hiraiwa, C.; Hirai, T. Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction. J. Am. Chem. Soc. 2025, 147, 1968–1979. [Google Scholar] [CrossRef] [PubMed]
- Ciuparu, D.; Bensalem, A.; Pfefferle, L. Pd–Ce interactions and adsorption properties of palladium: CO and NO TPD studies over Pd–Ce/Al2O3 catalysts. Appl. Catal. B Environ. 2000, 26, 241–255. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, H.; Peng, C.K.; Bu, L.; Chiang, C.L.; Tian, K.; Zhao, Y.; Zhao, J.; Lin, Y.G.; Lee, J.M.; et al. Co-Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small 2020, 16, e2002426. [Google Scholar] [CrossRef]
- Wang, A.; Olsson, L. Insight into the SO2 poisoning mechanism for NOx removal by NH3-SCR over Cu/LTA and Cu/SSZ-13. Chem. Eng. J. 2020, 395, 125048. [Google Scholar] [CrossRef]
- Zhu, N.; Shan, Y.; Shan, W.; Sun, Y.; Liu, K.; Zhang, Y.; He, H. Distinct NO2 Effects on Cu-SSZ-13 and Cu-SSZ-39 in the Selective Catalytic Reduction of NOx with NH3. Environ. Sci. Technol. 2020, 54, 15499–15506. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Shi, X.; Yan, Z.; Liu, J.; Yu, Y.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal. Today 2019, 320, 84–90. [Google Scholar] [CrossRef]
- Chang, T.; Wang, Z.; Wang, Z.; An, H.; Li, F.; Xue, W.; Wang, Y. High catalytic performance of CuCe/Ti for CO oxidation and the role of TiO2. Chin. J. Chem. Eng. 2023, 62, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, X.; Lu, Y.; Sun, C.; Tang, C.; Gao, F.; Dong, L. Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. J. Colloid Interface Sci. 2018, 509, 334–345. [Google Scholar] [CrossRef]
- Pan, Y.; Li, N.; Ran, S.; Wen, D.; Luo, Q.; Li, K.; Zhou, Q. Efficient Catalysis for Low-Temperature CO Selective Catalytic Reduction over an Fe-Cu Bimetal Oxide Catalyst Supported on Amorphous SiO2. Ind. Eng. Chem. Res. 2022, 61, 9991–10003. [Google Scholar] [CrossRef]
- Bera, P.; Cámara, A.L.; Hornés, A.; Martínez-Arias, A. Comparative in Situ DRIFTS-MS Study of 12CO- and 13CO-TPR on CuO/CeO2 Catalyst. J. Phys. Chem. C 2009, 113, 10689–10695. [Google Scholar] [CrossRef]
- Liu, Q.; Mi, J.; Chen, X.; Wang, S.; Chen, J.; Li, J. Effects of phosphorus modification on the catalytic properties and performance of CuCeZr mixed metal catalyst for simultaneous removal of CO and NOx. Chem. Eng. J. 2021, 423, 130228. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Wang, H.; Sun, Y.; Dong, F. Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning. Chin. Chem. Lett. 2024, 35, 108596. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Sengupta, D.; Sha, F.; Otake, K.-I.; Chen, Y.; Idrees, K.B.; Kirlikovali, K.O.; Son, F.A.; Wang, M.; et al. Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility. J. Am. Chem. Soc. 2024, 146, 15130–15142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kim, T. Effects of iron precursor and loading on the catalytic performance of FeOx/CeO2 catalysts for NO reduction by CO. Mol. Catal. 2020, 494, 111123. [Google Scholar] [CrossRef]
- Liu, X.; Jia, C.; Jiang, G.; Zhang, C.; Chen, M.; Zhao, X.; Zhang, X.; Fu, M.; Li, S.; Wu, J.; et al. Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chin. Chem. Lett. 2023, 35, 109455. [Google Scholar] [CrossRef]
- Vityuk, A.D.; Ma, S.; Alexeev, O.S.; Amiridis, M.D. NO reduction with CO over HY zeolite-supported rhodium dicarbonyl complexes: Giving insight into the structure sensitivity. React. Chem. Eng. 2019, 4, 418–426. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, L.; Zhang, H.; Yao, X.; Gao, F.; Yao, K.; Dong, L.; Chen, Y. Investigation of surface synergetic oxygen vacancy in CuO–CoO binary metal oxides supported on γ-Al2O3 for NO removal by CO. J. Colloid Interface Sci. 2013, 390, 158–169. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, R.; Liu, N.; Dai, C.; Yu, G.; Wang, N.; Chen, B. Unraveling the interactions of reductants and reaction path over Cu-ZSM-5 for model coal-gas-SCR via a transient reaction study. Catal. Sci. Technol. 2022, 12, 823–833. [Google Scholar] [CrossRef]
- Zou, W.; Liu, L.; Zhang, L.; Li, L.; Cao, Y.; Wang, X.; Tang, C.; Gao, F.; Dong, L. Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Appl. Catal. A Gen. 2015, 505, 334–343. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, P.; Cai, Q.; Bu, M.; Zhang, C.; Wu, H.; He, Y.; Fu, M.; Li, S.; Liu, X. In-situ fabrication of TiO2/NH2-MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chin. Chem. Lett. 2024, 35, 109524. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Duan, J.; Bi, S. Insights into deNOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS. Sep. Purif. Technol. 2020, 234, 116081. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Wei, L.; Chu, B.; Qin, Z.; Jin, G.; Tong, Z.; Dong, L.; Li, B. Preparation of three-dimensionally ordered macroporous MFe2O4 (M = Co, Ni, Cu) spinel catalyst and its simultaneous catalytic application in CO oxidation and NO + CO reaction. Fuel 2020, 272, 117738. [Google Scholar] [CrossRef]
- Dong, S.; Wang, H.; Gong, L.; Hu, R.; Qu, Z. Poisoning mechanism of alkali metal on Cu–Fe2O3 catalyst for selective catalytic reduction of NOx with NH3. Surf. Interfaces 2022, 35, 102411. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Xiao, W.; Ruan, M.; Yin, Y.; Song, Q.; Xie, K.; Qin, C.; Dong, M.; Zhou, Y.; et al. Promotional mechanism of enhanced denitration activity with Cu modification in a Ce/TiO2–ZrO2 catalyst for a low temperature NH3-SCR system. RSC Adv. 2022, 12, 378–388. [Google Scholar] [CrossRef]
- Ni, S.; Wu, W.; Yang, Z.; Zhang, M.; Yang, J. Influence of Copper Valence in CuOx/TiO2 Catalysts on the Selectivity of Carbon Dioxide Photocatalytic Reduction Products. Nanomaterials 2024, 14, 1930. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dang, P.; Tang, X.; Lu, M.; Du, Y.; Zhou, Y.; Yi, H.; Duan, E. Recent advances in NO reduction with CO over copper-based catalysts: Reaction mechanisms, optimization strategies, and anti-inactivation measures. Chem. Eng. J. 2022, 450, 137374. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Appl. Catal. B Environ. 2011, 110, 71–80. [Google Scholar] [CrossRef]
Catalysts | Reaction Conditions | Temperature/°C | NO Conversion/% | CO Conversion/% | Ref. | ||
---|---|---|---|---|---|---|---|
NO | CO | GHSV | |||||
Cu-Co/TiO2 | 3000 ppm | 3000 ppm | 10,000 h−1 | 250 | 100 | 76 | [10] |
Cu-Ce-Fe-Co/TiO2 | 200 ppm | 200 ppm | 1000 h−1 | 200 | 96 | 72 | [10] |
Cu-Fe/CNT-syn | 5% | 10% | 60,000 h−1 | 500 | 100 | 50 | [11] |
CuO-CeO2/γ-Al2O3 | 5% | 10% | 24,000 mL·g−1·h−1 | 400 | 100 | - | [12] |
CuO/γ-Al2O3 | 5% | 10% | 5000 h−1 | 200 | 80 | - | [13] |
Cu/AlPO4 | 0.2 vol% | 1.5 vol% | 2000 mL·min−1·g−1 | 400 | 85 | 48 | [14] |
CuO/CeO2/γ-Al2O3 | 5% | 10% | 12,000 h−1 | 400 | 72 | - | [15] |
Cu-CeO2 | 500 ppm | 1000 ppm | 2000 cm3·h−1·g−1 | 225 | 100 | 70 | [16] |
Cu/CeO2 | 2400 ppm | 1200 ppm | 24,000 mL·h−1·g−1 | 240 | 100 | 45 | [17] |
CuCe/CNT | 250 ppm | 5000 ppm | 1500 mL·min−1·g−1 | 220 | 96.5 | - | [18] |
CuCe/AC | 250 ppm | 5000 ppm | 1500 mL·min−1·g−1 | 220 | 42.6 | - | [18] |
CuCe/SiC | 250 ppm | 5000 ppm | 1500 mL·min−1·g−1 | 220 | 44.6 | - | [18] |
CuCe/CNT | 250 ppm | 5000 ppm | 12,600 h−1 | 240 | 96 | 100 | [19] |
Cu/CeO2 | 800 ppm | 1600 ppm | 30,000 h−1 | 200 | 70 | - | [20] |
CuCe/NF | 500 ppm | 1000 ppm | 25,000 h−1 | 200 | 100 | 50 | [21] |
Samples | Cu wt.% | Ce wt.% |
---|---|---|
CuCe/SiO2 | 2.8723 | 12.3597 |
CuCe/Al2O3 | 2.6175 | 12.9358 |
CuCe/TiO2 | 2.4624 | 10.6724 |
Samples | Surface Atomic Species (%) | ||
---|---|---|---|
Cu+/Cu | Ce3+/Ce | Oα/(Oα + Oβ + Oγ) | |
CuCe/SiO2 | 24.7 | 15.7 | 7.2 |
CuCe/Al2O3 | 54.0 | 17.2 | 15.0 |
CuCe/TiO2 | 75.4 | 30.0 | 82.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, D.; Pan, K.; Liu, H.; Wang, P.; Yu, F. Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts. Catalysts 2025, 15, 833. https://doi.org/10.3390/catal15090833
Cui D, Pan K, Liu H, Wang P, Yu F. Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts. Catalysts. 2025; 15(9):833. https://doi.org/10.3390/catal15090833
Chicago/Turabian StyleCui, Dan, Keke Pan, Huan Liu, Peipei Wang, and Feng Yu. 2025. "Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts" Catalysts 15, no. 9: 833. https://doi.org/10.3390/catal15090833
APA StyleCui, D., Pan, K., Liu, H., Wang, P., & Yu, F. (2025). Effects of SiO2, Al2O3 and TiO2 Catalyst Carriers on CO-SCR Denitration Performance of Bimetallic CuCe Catalysts. Catalysts, 15(9), 833. https://doi.org/10.3390/catal15090833