Theoretical Study of Isoprene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System
Abstract
1. Introduction
2. Results and Discussion
2.1. Coordination Stage
2.2. Initiation Stage
2.3. Polymer Chain Growth Stage
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malaysian Rubber Council. Available online: https://www.myrubbercouncil.com/industry/world_production.php (accessed on 8 June 2023).
- Makhiyanov, N.; Akhmetov, I.G.; Vagizov, A.M. Microstructure of pol-yisoprenes synthesized with titanium- and neodymium-containing catalytic systems. Polym. Sci. Ser. A. 2012, 54, 942–949. [Google Scholar] [CrossRef]
- Natta, C. Stereospecific polymerizations. J. Polym. Sci. 1960, 48, 219–239. [Google Scholar] [CrossRef]
- Natta, G.; Porri, L.; Carbonaro, A.; Stoppa, G. Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titaniumalkoxide catalyst systems. I. Cis-1,4 isotactic poly (1,3-pentadiene). Die Makromol. Chem. Macromol. Chem. Phys. 1964, 77, 114–125. [Google Scholar] [CrossRef]
- Natta, G.; Porri, L.; Carbonaro, A. Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titanium alkoxide catalyst systems. II. 1,2-polybutadiene and 3, 4-polyisoprene. Die Makromol. Chem. Macromol. Chem. Phys. 1964, 77, 126–138. [Google Scholar] [CrossRef]
- Tinyakova, E.N.; Dolgoplosk, B.A.; Zhuravleva, T.G.; Kovalevskaya, R.N.; Kuren’Gina, T.N. Synthesis of cis and trans polymers of dienes on oxide catalysts and investigation of their structure and properties. J. Polym. Sci. 1961, 52, 159–167. [Google Scholar] [CrossRef]
- Cooper, W.; Vaughan, G. Recent developments in the polymerization of conjugated dienes. Prog. Polym. Sci. 1967, 1, 91–160. [Google Scholar] [CrossRef]
- Hsieh, H.L.; Yeh, H.C. Polymerization of butadiene and isoprene with lanthanide catalysts; characterization and properties of homopolymers and co-polymers. Rubber Chem. Technol. 1985, 58, 117–145. [Google Scholar] [CrossRef]
- Fischbach, A.; Anwander, R. Neodymium Based Ziegler Catalysts Fundamental Chemistry; Nuyken, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 204, pp. 155–281. [Google Scholar] [CrossRef]
- Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization. Neodymium Based Ziegler Catal.–Fundam. Chem. 2006, 204, 1–154. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, D.; Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-conjugated dienes with rare-earth metal precursors. Mol. Catal. Rare-Earth Elem. 2010, 137, 49–108. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Hu, Y.; Zhang, X. Lanthanide complexes mediated co-ordinative chain transfer polymerization of conjugated dienes. Sci. China Technol. Sci. 2018, 61, 1286–1294. [Google Scholar] [CrossRef]
- Kalinin, A.V.; Novikova, E.S.; Agibalova, L.V.; Saprykina, N.N.; Zuev, V.V. Isoprene polymerization using heterogeneous neodymium catalysts sup-ported by a polysiloxane covered nanodiamonds. Fuller. Nanotub. Carbon Nanostructures 2024, 32, 684–689. [Google Scholar] [CrossRef]
- Kang, D.; Ma, R.; Hu, H.; Zhou, Y.; Mao, G.; Xin, S. Novel High-Efficiency Single-Site Rare Earth (RE) Catalyst System for Isoprene Polymerization. Polymers 2025, 17, 1219. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Tian, L.; Zheng, W.; Wang, F.; Zhang, X. Stereo polymerblocking of dienes in switching stereoselectivity by addition of MMAO cocatalyst. J. Macromol. Sci. Part A 2025, 62, 118–125. [Google Scholar] [CrossRef]
- Masliy, A.N.; Akhmetov, I.G.; Kuznetsov, A.M.; Davletbaeva, I.M. DFT and ONIOM Simulation of 1, 3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler–Natta System. Polymers 2023, 15, 1166. [Google Scholar] [CrossRef]
- Anno, T. Out-of-Plane Vibrations of a Conjugated Hydrocarbon: trans-Butadiene. J. Chem. Phys. 1958, 28, 944–949. [Google Scholar] [CrossRef]
- Masliy, A.N.; Akhmetov, I.G.; Kuznetsov, A.M.; Davletbaeva, I.M. Effect of DFT Methods and Dispersion Correction Models in ONIOM Methodology on the Activation Energy of Butadiene Polymerization on a Neodymium-Based Ziegler–Natta Catalyst. Int. J. Quantum Chem. 2024, 124, e27462. [Google Scholar] [CrossRef]
- Marina, N.G.; Monakov, Y.B.; Sabirov, Z.M.; Tolstikov, G.A. Lanthanide compounds—Catalysts of stereospecific polymerization of diene monomers. Review. Polym. Sci. USSR 1991, 33, 387–417. [Google Scholar] [CrossRef]
- Masliy, A.N.; Akhmetov, I.G.; Kuznetsov, A.M.; Davletbaeva, I.M. Theoretical Study of the Halogen Concentration Effect on the 1, 3-Butadiene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System. Reactions 2024, 5, 753–764. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Dapprich, S.; Komáromi, I.; Byun, K.S.; Morokuma, K.; Frisch, M.J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energy-gies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 1999, 461, 1–21. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and as-sessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 15. [Google Scholar] [CrossRef]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and efficient im-plicit solvation model for fast semiempirical methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef]
ΔG≠trans–cis | ΔGtrans–cis | ΔGA-P | |||
---|---|---|---|---|---|
TA | TP | TA | TP | TA-P | CA-P |
33.5 | 25.3 | 6.9 | −13.1 | 8.3 | −11.7 |
Reagent | ΔGA-P | ΔG≠T-C | ΔGT-C | ΔG≠in | ΔG≠tot | ΔGR | Product |
---|---|---|---|---|---|---|---|
P-AS-TA | - | - | - | 58.0 | 58.0 | −99.5 | P-TA-AS |
P-AS-TA | - | 33.5 | 6.9 | 33.6 | 40.5 | −98.4 | P-CA-AS |
P-AS-TA | 8.3 | - | - | 35.3 | 43.6 | −94.4 | P-TP-AS |
P-AS-TA | 8.3 | 25.3 | −13.1 | 50.8 | 50.8 | −68.6 | P-CP-AS |
Reagent | ΔGA-P | ΔG≠T-C | ΔGT-C | ΔG≠in | ΔG≠tot | ΔGR | Product |
---|---|---|---|---|---|---|---|
P-CA-AS-Tp | 5.6 | - | - | 85.2 | 85.2 | −83.1 | P-CATp-AS |
P-CA-AS-Tp | 5.6 | 26.4 | 13.3 | 45.9 | 53.6 | −61.3 | P-CACP-AS |
P-CA-AS-TA | - | - | - | 77.0 | 77.0 | −73.2 | P-CATA-AS |
P-CA-AS-TA | - | 28.2 | 9.7 | 32.1 | 41.7 | −82.9 | P-CACA-AS |
P-CP-AS-Tp | 1.2 | - | - | 79.6 | 80.8 | −64.7 | P-CPTp-AS |
P-CP-AS-Tp | 1.2 | 21.8 | 11.2 | 32.7 | 43.1 | −67.9 | P-CPCP-AS |
P-CP-AS-TA | - | - | - | 79.1 | 79.1 | −71.3 | P-CPTA-AS |
P-CP-AS-TA | - | 35.9 | 7.8 | 30.1 | 37.9 | −76.0 | P-CPCA-AS |
P-TA-AS-Tp | 11.4 | - | - | 90.9 | 102.3 | −36.6 | P-TATp-AS |
P-TA-AS-Tp | 11.4 | 25.1 | 1.0 | 84.7 | 97.1 | −36.8 | P-TACP-AS |
P-TA-AS-TA | - | - | - | 84.3 | 84.3 | −56.1 | P-TATA-AS |
P-TA-AS-TA | - | 33.9 | 15.2 | 67.3 | 82.5 | −51.5 | P-TACA-AS |
P-TP-AS-Tp | 4.4 | - | - | 98.5 | 102.9 | −79.0 | P-TPTp-AS |
P-TP-AS-Tp | 4.4 | 25.5 | −6.7 | 58.5 | 58.5 | −82.9 | P-TPCP-AS |
P-TP-AS-TA | - | - | - | 67.7 | 67.7 | −39.2 | P-TPTA-AS |
P-TP-AS-TA | - | 25.6 | −4.2 | 50.9 | 50.9 | −94.1 | P-TPCA-AS |
Reagent | ΔGA-P | ΔG≠T-C | ΔGT-C | ΔG≠in | ΔG≠tot | ΔGR | Product |
---|---|---|---|---|---|---|---|
P-CACA-AS-Tp | - | - | - | 85.6 | 85.6 | −44.5 | P-CACATp-AS |
P-CACA-AS-Tp | - | 24.5 | 9.2 | 75.2 | 84.4 | −43.5 | P-CACACP-AS |
P-CACA-AS-TA | 8.2 | - | - | 64.6 | 72.8 | −33.4 | P-CACATA-AS |
P-CACA-AS-TA | 8.2 | 33.0 | 8.4 | 36.8 | 53.4 | −53.5 | P-CACACA-AS |
P-CACP-AS-Tp | - | - | - | 97.9 | 97.9 | −45.7 | P-CACPTp-AS |
P-CACP-AS-Tp | - | 23.8 | 9.0 | 66.0 | 75.0 | −60.1 | P-CACPCP-AS |
P-CACP-AS-TA | 4.9 | - | - | 58.2 | 62.2 | −34.1 | P-CACPTA-AS |
P-CACP-AS-TA | 4.9 | 29.8 | 8.1 | 37.8 | 50.8 | −51.7 | P-CACPCA-AS |
P-TPCA-AS-Tp | - | - | - | 105.9 | 105.9 | −42.9 | P-TPCATp-AS |
P-TPCA-AS-Tp | - | 23.2 | 6.8 | 69.0 | 75.8 | −40.2 | P-TPCACP-AS |
P-TPCA-AS-TA | 3.7 | - | - | 94.8 | 98.5 | −19.0 | P-TPCATA-AS |
P-TPCA-AS-TA | 3.7 | 33.5 | 3.3 | 43.7 | 47.0 | −46.1 | P-TPCACA-AS |
P-TPCP-AS-Tp | - | - | - | 103.0 | 103.0 | −32.9 | P-TPCPTp-AS |
P-TPCP-AS-Tp | - | 25.1 | 9.8 | 66.7 | 76.4 | −68.0 | P-TPCPCP-AS |
P-TPCP-AS-TA | 6.9 | - | - | 42.9 | 86.8 | −53.6 | P-TPCPTA-AS |
P-TPCP-AS-TA | 6.9 | 36.3 | 8.2 | 31.4 | 46.5 | −43.2 | P-TPCPCA-AS |
Reagent | ΔGA-P | ΔG≠T-C | ΔGT-C | ΔG≠in | ΔG≠in | ΔGR | Product |
---|---|---|---|---|---|---|---|
P-CACACATP-AS | - | - | - | 73.1 | 73.1 | −52.8 | P-CACACA-AS-TP |
P-CACACACP-AS | - | 29.1 | 11.1 | 53.9 | 65.0 | −57.8 | P-CACACA-AS-TP |
P-CACACATA-AS | 8.0 | - | - | 75.0 | 83.0 | −34.0 | P-CACACA-AS-TA |
P-CACACACA-AS | 8.0 | 30.2 | 11.8 | 32.5 | 52.3 | −52.1 | P-CACACA-AS-TA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masliy, A.N.; Akhmetov, I.G.; Kuznetsov, A.M.; Davletbaeva, I.M. Theoretical Study of Isoprene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System. Catalysts 2025, 15, 810. https://doi.org/10.3390/catal15090810
Masliy AN, Akhmetov IG, Kuznetsov AM, Davletbaeva IM. Theoretical Study of Isoprene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System. Catalysts. 2025; 15(9):810. https://doi.org/10.3390/catal15090810
Chicago/Turabian StyleMasliy, Alexey N., Ildar G. Akhmetov, Andrey M. Kuznetsov, and Ilsiya M. Davletbaeva. 2025. "Theoretical Study of Isoprene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System" Catalysts 15, no. 9: 810. https://doi.org/10.3390/catal15090810
APA StyleMasliy, A. N., Akhmetov, I. G., Kuznetsov, A. M., & Davletbaeva, I. M. (2025). Theoretical Study of Isoprene Polymerization Catalyzed by the Neodymium-Based Ziegler–Natta System. Catalysts, 15(9), 810. https://doi.org/10.3390/catal15090810