Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. Results of X-Ray Diffraction Analysis
2.2. Results of X-Ray Photoelectron Spectroscopy
2.3. Results of Temperature Programmed Reduction (H2-TPR)
2.4. Oxygen Temperature-Programmed Desorption (O2-TPD)
2.5. Results of Electrochemical Impedance Spectroscopy Analysis of Symmetrical Cells
3. Materials and Methods
3.1. Synthesis of the PrxCe1−xMnO3−δ Electrocatalysts
3.2. Symmetrical Cell Fabrication
3.3. Characterization Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Sá, M.H. Electrochemical Devices to Power a Sustainable Energy Transition—An Overview of Green Hydrogen Contribution. Appl. Sci. 2024, 14, 2168. [Google Scholar] [CrossRef]
- Gumeci, C.; Parrondo, J.; Hussain, A.M.; Thompson, D.; Dale, N. Praseodymium based double-perovskite cathode nanofibers for intermediate temperature solid oxide fuel cells (IT-SOFC). Int. J. Hydrogen Energy 2021, 46, 31798–31806. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceram. Int. 2020, 46, 5521–5535. [Google Scholar] [CrossRef]
- Wachsman, E.D.; Lee, K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, D.; Niu, L.; Zhu, X.; Wang, N.; Liang, Q.; Zhang, Y.; Hu, L.; Gong, H.; Yan, W. Preparation of high-performance multiphase heterostructures IT-SOFC cathode materials by Pr-induced in situ assembly. Appl. Catal. B Environ. 2024, 355, 124174. [Google Scholar] [CrossRef]
- Ndubuisi, A.; Abouali, S.; Singh, K.; Thangadurai, V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J. Mater. Chem. A 2021, 10, 2196–2227. [Google Scholar] [CrossRef]
- Taskin, A.A.; Lavrov, A.N.; Ando, Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 2005, 86, 091910. [Google Scholar] [CrossRef]
- Burriel, M.; Pena-Martinez, J.; Chater, R.J.; Fearn, S.; Berenov, A.V.; Skinner, S.J.; Kilner, J.A. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem. Mater. 2012, 24, 613–621. [Google Scholar] [CrossRef]
- da Silva, F.S.; de Souza, T.M. Novel materials for solid oxide fuel cell technologies: A literature review. Int. J. Hydrogen Energy 2017, 42, 26020–26036. [Google Scholar] [CrossRef]
- Kilner, J.A.; Burriel, M. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 2014, 44, 365–393. [Google Scholar] [CrossRef]
- Manthiram, A.; Kim, J.-H.; Kim, Y.N.; Lee, K.-T. Crystal chemistry and properties of mixed ionic-electronic conductors. J. Electroceramics 2011, 27, 93–107. [Google Scholar] [CrossRef]
- Chockalingam, R.; Ganguli, A.K.; Basu, S. Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells. J. Power Sources 2014, 250, 80–89. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, W.; Ding, D.; Liu, M.; Ciucci, F.; Tade, M.; Shao, Z. Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Adv. Energy Mater. 2015, 5, 1500537. [Google Scholar] [CrossRef]
- Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S.T. Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review. J. Power Sources 2018, 381, 136–155. [Google Scholar] [CrossRef]
- Cruz-Pacheco, A.F.; Cuaspud, J.A.G.; Vargas, C.A.P.; Castello, J.B.C. Effect of Pr on the electrical and chemical properties of cerium oxide prepared by combustion method. Int. J. Appl. Ceram. Technol. 2019, 16, 2482–2492. [Google Scholar] [CrossRef]
- Chen, D.; Bishop, S.R.; Tuller, H.L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J. Electroceramics 2012, 28, 62–69. [Google Scholar] [CrossRef]
- Chiba, R.; Taguchi, H.; Komatsu, T.; Orui, H.; Nozawa, K.; Arai, H. High temperature properties of Ce1−xPrxO2−δ as an active layer material for SOFC cathodes. Solid State Ionics 2011, 197, 42–48. [Google Scholar] [CrossRef]
- Bishop, S.R.; Chen, D.; Kuru, Y.; Kim, J.-J.; Stefanik, T.; Tuller, H.L. (High Temperature Materials Division Outstanding Achievement Award) Measurement and Modeling of Electrical, Mechanical, and Chemical Properties of a Model Mixed Ionic Electronic Conductor: Pr Doped Ceria. ECS Trans. 2011, 33, 51–57. [Google Scholar] [CrossRef]
- Shuk, P.; Tichonova, L.; Guth, U. Materials for electrodes based on rare earth manganites. Solid State Ionics 1994, 68, 177–184. [Google Scholar] [CrossRef]
- Kumar, S.; Coondoo, I.; Vasundhara, M.; Kumar, S.; Kholkin, A.L.; Panwar, N. Structural, magnetic, magnetocaloric and specific heat investigations on Mn doped PrCrO3 orthochromites. J. Phys. Condens. Matter 2017, 29, 195802. [Google Scholar]
- Ishihara, T.; Kudo, T.; Matsuda, H.; Takita, Y. Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. J. Electrochem. Soc. 1995, 142, 1519–1524. [Google Scholar] [CrossRef]
- Ivers-Tiffée, E.; Weber, A.; Herbstritt, D. Materials and technologies for SOFC-components. J. Eur. Ceram. Soc. 2001, 21, 1805–1811. [Google Scholar] [CrossRef]
- Zakaria, Z.; Mat, Z.A.; Abu Hassan, S.H.; Kar, Y.B. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res. 2019, 44, 594–611. [Google Scholar] [CrossRef]
- Lakshmi, V.V.; Bauri, R.; Gandhi, A.S.; Paul, S. Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs. Int. J. Hydrogen Energy 2011, 36, 14936–14942. [Google Scholar] [CrossRef]
- Zhigachev, A.O.; Rodaev, V.V.; Zhigacheva, D.V.; Lyskov, N.V.; Shchukina, M.A. Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: A review. Ceram. Int. 2021, 47, 32490–32504. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Z.; Wang, L.; Sun, P.; Zhang, Z.; Wang, S. Spinel MnCo2O4 Nanoparticles Supported on Three-Dimensional Graphene with Enhanced Mass Transfer as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem 2018, 11, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Vshivkova, A.I.; Gorelov, V.P.; Kuz’mIn, A.V.; Plaksin, S.V.; Pankratov, A.A.; Yaroslavtseva, T.V. Preparation and physicochemical properties of praseodymium oxide films and ceramics. Inorg. Mater. 2015, 51, 1168–1176. [Google Scholar] [CrossRef]
- Borchert, H.; Frolova, Y.V.; Kaichev, V.V.; Prosvirin, I.P.; Alikina, G.M.; Lukashevich, A.I.; Zaikovskii, V.I.; Moroz, E.M.; Trukhan, S.N.; Ivanov, V.P.; et al. Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium. J. Phys. Chem. B 2005, 109, 5728–5738. [Google Scholar] [CrossRef] [PubMed]
- Tankov, I.; Arishtirova, K.; Bueno, J.; Damyanova, S. Surface and structural features of Pt/PrO2–Al2O3 catalysts for dry methane reforming. Appl. Catal. A Gen. 2014, 474, 135–148. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, K.; Xu, D.; Gu, Y.; Ni, Q.; Zheng, Y.; Chen, H.; Ge, L.; Huang, X.; Guo, L. Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6−δ electrodes via infiltration of Pr6O11 bifunctional catalyst. Electrochimica Acta 2022, 402, 139569. [Google Scholar] [CrossRef]
- Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J. Catal. 2006, 244, 137–152. [Google Scholar] [CrossRef]
- Fan, J.; Wu, X.; Wu, X.; Liang, Q.; Ran, R.; Weng, D. Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: Effect on the OSC performance. Appl. Catal. B Environ. 2008, 81, 38–48. [Google Scholar] [CrossRef]
- Ren, T.-Z.; Xu, P.-B.; Deng, Q.-F.; Yuan, Z.-Y. Mesoporous Ce1−xMn xO2 mixed oxides with CuO loading for the catalytic total oxidation of propane. React. Kinet. Catal. Lett. 2013, 110, 405–420. [Google Scholar] [CrossRef]
- Jin, F.; Liu, X.; Chu, X.; Shen, Y.; Li, J. Effect of nonequivalent substitution of Pr3+/4+ with Ca2+ in PrBaCoFeO5+δ as cathodes for IT-SOFC. J. Mater. Sci. 2021, 56, 1147–1161. [Google Scholar] [CrossRef]
- Vedmid’, L.; Fedorova, O.; Fetisov, A.; Konysheva, E.; Uporov, S. Influence of low-level substitution Pr/(Sr or Ba) in PrMnO3 on structure distortions, magnetic transitions, and surface evolution. J. Mater. Sci. Mater. Electron. 2024, 35, 1–18. [Google Scholar] [CrossRef]
- Töpfer, J.; Feltz, A.; Gräf, D.; Hackl, B.; Raupach, L.; Weissbrodt, P. Cation valencies and distribution in the spinels NiMn2O4 and MzNiMn2−zO4 (M = Li, Cu) studied by XPS. Phys. Stat. Sol. (A) 1992, 134, 405–415. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, X.; Chen, L.; Yuan, F.; Zhu, Y. Soot Combustion over Nanostructured Ceria with Different Morphologies. Sci. Rep. 2016, 6, 29062. [Google Scholar] [CrossRef]
- Gurgul, J.; Rinke, M.T.; Schellenberg, I.; Pöttgen, R. The antimonide oxides REZnSbO and REMnSbO (RE = Ce, Pr)–an XPS study. Solid State Sci. 2013, 17, 122–127. [Google Scholar] [CrossRef]
- Teng, J.; Xia, T.; Li, Q.; Sun, L.; Zhao, H. Advanced electrocatalytic activity of praseodymium-deficient copper-based oxygen electrodes for solid oxide fuel cells. Int. J. Hydrogen Energy 2023, 48, 27361–27370. [Google Scholar] [CrossRef]
- Levasseur, B.; Kaliaguine, S. Effect of the rare earth in the perovskite-type mixed oxides AMnO3 (A= Y, La, Pr, Sm, Dy) as catalysts in methanol oxidation. J. Solid State Chem. 2008, 181, 2953–2963. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Guan, F.; Zhou, Y.; Lv, H.; Wang, G.; Bao, X. Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode. J. Catal. 2018, 359, 8–16. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Liu, B.; Hou, Z.; Dong, Y.; Cheng, M. La0.4Ce0.6O1.8-La0.8Sr0.2MnO3-8mol% yttria-stabilized zirconia composite cathode for anode-supported solid oxide fuel cells. J. Power Sources 2008, 175, 739–748. [Google Scholar] [CrossRef]
- Avila-Paredes, H.J.; Shvareva, T.; Chen, W.; Navrotsky, A.; Kim, S. A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. Phys. Chem. Chem. Phys. 2009, 11, 8580–8585. [Google Scholar] [CrossRef]
- Mänken, C.; Uecker, J.; Schäfer, D.; de Haart, L.G.J.; Eichel, R.-A. Impact of Electrochemical Impedance Spectroscopy Dataset Curation on Solid Oxide Cell Degradation Assessment. J. Electrochem. Soc. 2024, 171, 064503. [Google Scholar] [CrossRef]
- Zhang, J.; Lenser, C.; Menzler, N.H.; Guillon, O. Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 °C. Solid State Ionics 2020, 344, 115138. [Google Scholar] [CrossRef]
- Vert, V.B.; Serra, J.M. Influence of Barium Incorporation on the Electrochemical Performance of Ln0.58Sr0.4Fe0.8Co0.2O3–δ (Ln = La, Pr, Sm) Perovskites for Oxygen Activation at Intermediate Temperatures. Fuel Cells 2009, 9, 663–678. [Google Scholar] [CrossRef]
- Sharma, U.; Pawar, V.; Singh, P. Charge particle dynamics and electrochemical behaviour of SrTiO3−δ as anode material for IT-SOFC applications. Int. J. Hydrogen Energy 2023, 52, 1278–1289. [Google Scholar] [CrossRef]
- Porras-Vazquez, J.M.; Losilla, E.R.; Keenan, P.J.; Hancock, C.A.; Kemp, T.F.; Hanna, J.V.; Slater, P.R. Investigation into the effect of Si doping on the performance of Sr1−yCayMnO3−δ SOFC cathode materials. Dalton Trans. 2013, 42, 5421–5429. [Google Scholar] [CrossRef]
- Lyskov, N.; Kaluzhskikh, M.; Leonova, L.; Mazo, G.; Istomin, S.; Antipov, E. Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC. Int. J. Hydrogen Energy 2012, 37, 18357–18364. [Google Scholar] [CrossRef]
- Sánchez-Caballero, A.; Zamudio-García, J.; dos Santos-Gómez, L.; da Silva, I.; Pérez-Coll, D.; Porras-Vázquez, J.M.; Marrero-López, D. Reduced Thermal Expansion and Improved Electrochemical Performance in Pr-Substituted SrFeO3 as Symmetrical Electrode for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2025, 17, 21380–21391. [Google Scholar] [CrossRef]
- Chen, G.; Gao, Y.; Luo, Y.; Guo, R. Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte. Ceram. Int. 2017, 43, 1304–1309. [Google Scholar] [CrossRef]
- Murray, E.P.; Barnett, S.A. (La, Sr)MnO3–(Ce, Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics 2001, 143, 265–273. [Google Scholar] [CrossRef]
- Moura, C.G.; Grilo, J.P.d.F.; Macedo, D.A.; Cesário, M.R.; Fagg, D.P.; Nascimento, R.M. Cobalt-free perovskite Pr0. 5Sr0. 5Fe1− xCuxO3− δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells. Mater. Chem. Phys. 2016, 180, 256–262. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Zheng, Y.; Chen, H.; Ge, L.; Guo, L. PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Appl. Catal. B Environ. 2019, 257, 117868. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Zhang, W.; Yang, J.; Sheng, Q.; Zhu, X.; Bai, J. CoOX composite Pr0.4Sr0.6Co0.2Fe0.8O3−δ perovskite was used to obtain an IT-SOFC cathode with high electrocatalytic activity. Fuel 2025, 381, 133422. [Google Scholar] [CrossRef]
- Huang, X.; Pei, L.; Liu, Z.; Lu, Z.; Sui, Y.; Qian, Z.; Su, W. A study on PrMnO3-based perovskite oxides used in SOFC cathodes. J. Alloys Compd. 2002, 345, 265–270. [Google Scholar] [CrossRef]
- Balkanli Unlu, E.; Karaismailoglu Elibol, M.; Figen, H.E. Comparative Analysis of YSZ and ScSZ Electrolytes in Solid Oxide Fuel Cells (SOFCs) with Novel PrCeMn Electrocatalyst. In Proceedings of the 8th International Hydrogen Technologies Congress (IHTEC 2024), Diyarbakir, Türkiye, 12–15 May 2024; pp. 452–454. [Google Scholar]
- Tezel, E.; Unlu, E.B.; Figen, H.E.; Baykara, S.Z. Calcium silicate-based catalytic filters for partial oxidation of methane and biogas mixtures: Preliminary results. Int. J. Hydrogen Energy 2020, 45, 34739–34748. [Google Scholar] [CrossRef]
- Choi, H.; Fuller, A.; Davis, J.; Wielgus, C.; Ozkan, U.S. Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: Effect of dopant concentration. Appl. Catal. B Environ. 2012, 127, 336–341. [Google Scholar] [CrossRef]
Pr3d | Ce3d | Mn2p | O1s | ||||
---|---|---|---|---|---|---|---|
% | Pr4+ | Pr3+ | Ce4+ | Ce3+ | Mn4+ | Mn3+ | Oα/Oβ |
C1 | 23 | 77 | 31 | 69 | 0.9 | ||
C9 | 18 | 82 | 86 | 12 | 26 | 74 | 4.3 |
C8 | 21 | 79 | 77 | 23 | 30 | 70 | 12 |
C5 | 22 | 78 | 71 | 29 | 23 | 76 | 2.8 |
R1 (Ω·cm2) | R2 (Ω·cm2) | a2 | R3 (Ω·cm2) | a3 | RASR (Ω·cm2) | ||
---|---|---|---|---|---|---|---|
C1 | 700 °C | 2.3 | 0.46 | 0.49 | 29.04 | 0.85 | 29.5 |
750 °C | 1.8 | 0.27 | 0.64 | 15.55 | 0.82 | 15.83 | |
800 °C | 2.09 | 0.26 | 0.81 | 9.764 | 0.72 | 10.03 | |
850 °C | 1.65 | 0.45 | 0.58 | 5.072 | 0.74 | 5.52 | |
C9 | 700 °C | 2.8 | 4.45 | 0.56 | 24.55 | 0.74 | 29.00 |
750 °C | 1.85 | 4.22 | 0.57 | 20.51 | 0.81 | 24.73 | |
800 °C | 1.3 | 2.58 | 0.60 | 9.28 | 0.79 | 11.85 | |
850 °C | 1.115 | 0.94 | 0.71 | 6.99 | 0.72 | 7.93 | |
C8 | 700 °C | 4.00 | 0.54 | 0.71 | 19.26 | 0.79 | 19.80 |
750 °C | 3.38 | 1.05 | 0.45 | 11.16 | 0.82 | 12.21 | |
800 °C | 5.52 | 2.28 | 0.74 | 10.28 | 0.73 | 12.56 | |
850 °C | 5.24 | 2.46 | 0.87 | 8.04 | 0.67 | 10.50 | |
C5 | 700 °C | 2.21 | 0.55 | 0.53 | 10.04 | 0.75 | 10.59 |
750 °C | 1.68 | 1.28 | 0.45 | 4.10 | 0.88 | 5.38 | |
800 °C | 2.05 | 0.96 | 0.54 | 3.79 | 0.84 | 4.75 | |
850 °C | 2.59 | 0.90 | 0.80 | 3.92 | 0.74 | 4.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balkanlı Ünlü, E.; Karaismailoğlu Elibol, M.; Figen, H.E. Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells. Catalysts 2025, 15, 786. https://doi.org/10.3390/catal15080786
Balkanlı Ünlü E, Karaismailoğlu Elibol M, Figen HE. Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells. Catalysts. 2025; 15(8):786. https://doi.org/10.3390/catal15080786
Chicago/Turabian StyleBalkanlı Ünlü, Esra, Meltem Karaismailoğlu Elibol, and Halit Eren Figen. 2025. "Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells" Catalysts 15, no. 8: 786. https://doi.org/10.3390/catal15080786
APA StyleBalkanlı Ünlü, E., Karaismailoğlu Elibol, M., & Figen, H. E. (2025). Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells. Catalysts, 15(8), 786. https://doi.org/10.3390/catal15080786