Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface
Abstract
1. Introduction
2. Results
2.1. Mineralogical Characterization of Natural Coating Samples
2.1.1. Chemical Composition
2.1.2. Mineral and Organic Composition
2.2. Mineralogical Characterization of Synthesized Anatase Electrode
2.3. Synergistic Photo-Response Properties of β-Carotene and Anatase
3. Discussion
4. Materials and Methods
4.1. Natural Coating Samples Collection and Preparation
4.2. Characterization of Natural Coating Samples
4.3. Preparation and Characterization of Anatase Electrodes
4.4. Solar Response and Electrochemical Experiments of Anatase and β-Carotene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macholdt, D.S.; Jochum, K.P.; Pöhlker, C.; Arangio, A.; Förster, J.D.; Stoll, B.; Weis, U.; Weber, B.; Müller, M.; Kappl, M.; et al. Characterization and differentiation of rock varnish types from different environments by microanalytical techniques. Chem. Geol. 2017, 459, 91–118. [Google Scholar] [CrossRef]
- Huang, L.; Liu, F.; Tan, W.F.; Hu, H.Q.; Wang, M.K. Geochemical characteristics of selected elements in iron-manganese cutans and matrices of Alfisols in central China. J. Geochem. Explor. 2009, 103, 30–36. [Google Scholar] [CrossRef]
- Ju, Y.W.; Li, X.; Ju, L.T.; Feng, H.Y.; Tan, F.Q.; Cui, Y.S.; Yang, Y.; Wang, X.Q.; Cao, J.J.; Qiao, P.; et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Res. 2022, 110, 370–392. [Google Scholar] [CrossRef]
- Lu, A.H.; Li, Y.; Ding, H.R.; Xu, X.M.; Li, Y.Z.; Ren, G.P.; Liang, J.; Liu, Y.W.; Hong, H.; Chen, N.; et al. Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Proc. Natl. Acad. Sci. USA 2019, 116, 9741–9746. [Google Scholar] [CrossRef]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments; The Soil Science Society of America: Madison, WI, USA, 1989; pp. 379–438. [Google Scholar]
- Waychunas, G.A.; Kim, C.S.; Banfield, J.F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanoparticle Res. 2005, 7, 409–433. [Google Scholar] [CrossRef]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef]
- Baioumy, H.M. Ti-bearing minerals in sedimentary kaolin deposits of Egypt. Appl. Clay Sci. 2014, 101, 345–353. [Google Scholar] [CrossRef]
- Imperial, A.; Pe-Piper, G.; Piper, D.J.W.; Clyburne, J. The use of titania polymorphs as indicators of mesodiagenesis during hydrocarbon charge. Mar. Pet. Geol. 2023, 149, 106075. [Google Scholar] [CrossRef]
- Doane, T.A. A survey of photogeochemistry. Geochem. Trans. 2017, 18, 1. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Lu, A.H.; Li, Y.; Jin, S.; Wang, X.; Wu, X.L.; Zeng, C.P.; Li, Y.; Ding, H.R.; Hao, R.X.; Lv, M.; et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat. Commun. 2012, 3, 8. [Google Scholar] [CrossRef]
- Georgiou, C.D.; Sun, H.J.; McKay, C.P.; Grintzalis, K.; Papapostolou, I.; Zisimopoulos, D.; Panagiotidis, K.; Zhang, G.S.; Koutsopoulou, E.; Christidis, G.E.; et al. Evidence for photochemical production of reactive oxygen species in desert soils. Nat. Commun. 2015, 6, 7100. [Google Scholar] [CrossRef]
- Delgadillo-Hinojosa, F.; Segovia-Zavala, J.A.; Huerta-Díaz, M.A.; Atilano-Silva, H. Influence of geochemical and physical processes on the vertical distribution of manganese in Gulf of California waters. Deep Sea Res. Part I 2006, 53, 1301–1319. [Google Scholar] [CrossRef]
- Sunda, W.; Huntsman, S.; Harvey, G. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 1983, 301, 234–236. [Google Scholar] [CrossRef]
- Wells, M.L.; Mayer, L.M.; Donard, O.F.X.; Sierra, M.M.D.; Ackelson, S.G. The photolysis of colloidal iron in the oceans. Nature 1991, 353, 248–250. [Google Scholar] [CrossRef]
- Wang, X.M.; Lan, S.; Zhu, M.Q.; Ginder-Vogel, M.; Yin, H.; Liu, F.; Tan, W.F.; Feng, X.H. The Presence of Ferrihydrite Promotes Abiotic Formation of Manganese (Oxyhydr)oxides. Soil Sci. Soc. Am. J. 2015, 79, 1297–1305. [Google Scholar] [CrossRef]
- Lan, S.; Wang, X.M.; Xiang, Q.J.; Yin, H.; Tan, W.F.; Qiu, G.H.; Liu, F.; Zhang, J.; Feng, X.H. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochim. Cosmochim. Acta 2017, 211, 79–96. [Google Scholar] [CrossRef]
- Sherman, D.M. Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim. Cosmochim. Acta 2005, 69, 3249–3255. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Piatkowska, A.; Janus, M.; Szymanski, K.; Mozia, S. C-,N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Yu, W.L.; Zhang, J.F.; Peng, T.Y. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227. [Google Scholar] [CrossRef]
- Low, J.X.; Cheng, B.; Yu, J.G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 2002, 106, 5029–5034. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Pandey, A.K.; Abd Rahima, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 2017, 77, 89–108. [Google Scholar] [CrossRef]
- Kay, A.; Gratzel, M. Artificial photosynthesis. 1. Photosensitization of TiO2 solar-cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272–6277. [Google Scholar] [CrossRef]
- Kohno, Y.; Haga, E.; Yoda, K.; Shibata, M.; Fukuhara, C.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Adsorption behavior of natural anthocyanin dye on mesoporous silica. J. Phys. Chem. Solids 2014, 75, 48–51. [Google Scholar] [CrossRef]
- Polo, A.S.; Iha, N.Y.M. Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 2006, 90, 1936–1944. [Google Scholar] [CrossRef]
- Shanmugam, V.; Manoharan, S.; Anandan, S.; Murugan, R. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 104, 35–40. [Google Scholar] [CrossRef]
- Malherbe, C.; Ingley, R.; Hutchinson, I.; Edwards, H.; Carr, A.S.; Harris, L.; Boom, A. Biogeological Analysis of Desert Varnish Using Portable Raman Spectrometers. Astrobiology 2015, 15, 442–452. [Google Scholar] [CrossRef]
- Xu, X.M.; Ding, H.R.; Li, Y.; Lu, A.H.; Li, Y.; Wang, C.Q. Mineralogical characteristics of Mn coatings from different weathering environments in China: Clues on their formation. Miner. Petrol. 2018, 112, 671–683. [Google Scholar] [CrossRef]
- Kumar, B.N.V.; Kampe, B.; Rösch, P.; Popp, J. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. Analyst 2015, 140, 4584–4593. [Google Scholar] [CrossRef]
- Schroeder, W.A.; Johnson, E.A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in phaffia rhodozyma. J. Biol. Chem. 1995, 270, 18374–18379. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman-Spectrum of Anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Hemley, R.J. Pressure dependence of raman spectra of SiO2 polymorphs: A-quartz, coesite, and stishovite. In High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-Iti Akimoto; American Geophysical Union: Washington, DC, USA, 1987; pp. 347–359. [Google Scholar]
- Legodi, M.A.; de Waal, D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dye. Pigment. 2007, 74, 161–168. [Google Scholar] [CrossRef]
- Mernagh, T.P. Use of the laser raman microprobe for discrimination amongst feldspar minerals. J. Raman Spectrosc. 1991, 22, 453–457. [Google Scholar] [CrossRef]
- Inagaki, F.; Tasumi, M.; Miyazawa, T. Vibrational analysis of polyene chains—Assignments of resonance raman lines of poly(acetylene) and beta-carotene. J. Raman Spectrosc. 1975, 3, 335–343. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.M.; Shin, J.; Keum, Y.S.; Lee, J.H. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits-a review of recent advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Li, Y.; Li, Y.Z.; Lu, A.H.; Qiao, R.X.; Liu, K.H.; Ding, H.R.; Wang, C.Q. Characteristics of desert varnish from nanometer to micrometer scale: A photo-oxidation model on its formation. Chem. Geol. 2019, 522, 55–70. [Google Scholar] [CrossRef]
- Martin, D.; Amado, A.M.; Gonzálvez, A.G.; Marques, M.P.M.; de Carvalho, L.A.E.B.; Ureña, Á.G. FTIR Spectroscopy and DFT Calculations to Probe the Kinetics of β-Carotene Thermal Degradation. J. Phys. Chem. A 2019, 123, 5266–5273. [Google Scholar] [CrossRef]
- Mino, L.; Spoto, G.; Ferrari, A.M. CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study. J. Phys. Chem. C 2014, 118, 25016–25026. [Google Scholar] [CrossRef]
- Maddah, H.A. Investigation of charge transport mechanism at TiO2/MAPbI3/β-Carotene heterostructure in natural dye sensitized solar cells. Mater. Sci. Eng. B Adv. 2024, 302, 117197. [Google Scholar] [CrossRef]
- Dorn, R.I. Rock Varnish. Am. Sci. 1991, 79, 542–553. [Google Scholar] [CrossRef]
- Kumara, N.; Ekanayake, P.; Lim, A.; Liew, L.Y.C.; Iskandar, M.; Ming, L.C.; Senadeera, G.K.R. Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J. Alloys Compd. 2013, 581, 186–191. [Google Scholar] [CrossRef]
- Wang, Z.S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 2005, 21, 4272–4276. [Google Scholar] [CrossRef]
- Zhang, J.W.; Fu, D.F.; Gao, H.Y.; Deng, L. Mechanism of enhanced photocatalysis of TiO2 by Fe3+ in suspensions. Appl. Surf. Sci. 2011, 258, 1294–1299. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241. [Google Scholar] [CrossRef]
- Martin, J.H.; Fitzwater, S.E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 1988, 331, 341–343. [Google Scholar] [CrossRef]
Sample | Dark Current (mA) | Light Current (mA) | Photocurrent (mA) | Increasement |
---|---|---|---|---|
Ant | 0.049 | 0.070 | 0.021 | - |
Ant-caro1 | 0.061 | 0.120 | 0.059 | 64.4% |
Ant-caro2 | 0.059 | 0.121 | 0.062 | 66.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Ding, H.; Liu, T.; Du, Y.; Lu, A. Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface. Catalysts 2025, 15, 739. https://doi.org/10.3390/catal15080739
Ge X, Ding H, Liu T, Du Y, Lu A. Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface. Catalysts. 2025; 15(8):739. https://doi.org/10.3390/catal15080739
Chicago/Turabian StyleGe, Xiao, Hongrui Ding, Tong Liu, Yifei Du, and Anhuai Lu. 2025. "Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface" Catalysts 15, no. 8: 739. https://doi.org/10.3390/catal15080739
APA StyleGe, X., Ding, H., Liu, T., Du, Y., & Lu, A. (2025). Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface. Catalysts, 15(8), 739. https://doi.org/10.3390/catal15080739