Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Crystal and Band Structure of MoS2
3. Synthesis Strategy of MoS2
3.1. Mechanical Ball Milling
3.2. Chemical Vapor Deposition
3.3. Wet Chemical Method
3.4. Template Method
4. Fabrication of MoS2-Based HER Electrocatalysts
4.1. Morphological Modulation
4.1.1. Conventional Morphology Design
4.1.2. Unconventional Morphology Design
4.2. Phase Engineering
4.3. Defect Engineering
4.4. Construction of Heterostructures
4.4.1. MoS2–Metal Nanocomposite Heterostructures
4.4.2. MoS2-Non-Metal Compound Heterostructures
5. Summary and Outlook
5.1. Challenges
5.2. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HER | Hydrogen evolution reaction |
TMDs | transition metal dichalcogenides |
MoS2 | molybdenum disulfide |
ΔGH* | Gibbs free energy |
CVD | chemical vapor deposition |
GQD | graphene quantum dots |
QSs | quantum sheets |
ALD | atomic layer deposition |
0D | zero dimensional |
EC-TERS | electrochemical tip enhanced Raman spectroscopy |
References
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, J.; Li, F.; Jung, S.M.; Okyay, M.S.; Ahmad, I.; Kim, S.J.; Park, N.; Jeong, H.Y.; Baek, J.B. An Efficient and Ph-Universal Ruthenium-Based Catalyst for the Hydrogen Evolution Reaction. Nat. Nanotechnol. 2017, 12, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.T.; Wang, P.C.; Lin, J.H.; Cao, J.; Qi, J.L. Modification Strategies on Transition Metal-Based Electrocatalysts for Efficient Water Splitting. J. Energy Chem. 2021, 58, 446–462. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Tian, W.W.; Yuan, Z.Y. Water Electrolysis for Hydrogen Production: From Hybrid Systems to Self-Powered/Catalyzed Devices. Energy Environ. Sci. 2024, 17, 49–113. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar]
- Zhang, Y.; Teng, X.A.; Ma, Z.Q.; Wang, R.M.; Lau, W.M.; Shan, A.X. Synthesis of Feooh Scaly Hollow Tubes Based on Cu2o Wire Templates toward High-Efficiency Oxygen Evolution Reaction. Rare Met. 2023, 42, 1836–1846. [Google Scholar] [CrossRef]
- Feidenhansl, A.A.; Regmi, Y.N.; Wei, C.; Xia, D.; Kibsgaard, J.; King, L.A. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem. Rev. 2024, 124, 5617–5667. [Google Scholar] [CrossRef]
- Gao, G.L.; Zhu, G.; Chen, X.L.; Sun, Z.X.; Cabot, A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS Nano 2023, 17, 20804–20824. [Google Scholar] [CrossRef]
- Huang, S.Y.; Shan, A.X.; Wang, R.M. Low Pt Alloyed Nanostructures for Fuel Cells Catalysts. Catalysts 2018, 8, 538. [Google Scholar] [CrossRef]
- Wang, C.X.; Guo, W.X.; Chen, T.L.; Lu, W.Y.; Song, Z.Y.; Yan, C.C.; Feng, Y.; Gao, F.M.; Zhang, X.N.; Rao, Y.P.; et al. Advanced Noble-Metal/Transition-Metal/Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Water-Electrolysis for Hydrogen Production. Coord. Chem. Rev. 2024, 514, 215899. [Google Scholar] [CrossRef]
- Xiong, L.W.; Qiu, Y.F.; Peng, X.; Liu, Z.T.; Chu, P.K. Electronic Structural Engineering of Transition Metal-Based Electrocatalysts for the Hydrogen Evolution Reaction. Nano Energy 2022, 104, 107882. [Google Scholar] [CrossRef]
- You, B.; Liu, X.; Hu, G.X.; Gul, S.; Yano, J.; Jiang, D.E.; Sun, Y.J. Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. J. Am. Chem. Soc. 2017, 139, 12283–12290. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Xie, L.B.; Zhao, W.W.; Liu, S.J.; Zhao, Q. Oxygen-Facilitated Dynamic Active-Site Generation on Strained MoS2 During Photo-Catalytic Hydrogen Evolution. Chem. Eng. J. 2021, 405, 127028. [Google Scholar] [CrossRef]
- Huang, J.B.; Jiang, Y.; An, T.Y.; Cao, M.H. Increasing the Active Sites and Intrinsic Activity of Transition Metal Chalcogenide Electrocatalysts for Enhanced Water Splitting. J. Mater. Chem. A 2020, 8, 25465–25498. [Google Scholar] [CrossRef]
- Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 28–33. [Google Scholar] [CrossRef]
- Jia, H.W.; Meng, L.H.; Lu, Y.L.; Liang, T.Y.; Yuan, Y.; Hu, Y.F.; Dong, Z.K.; Zhou, Y.Z.; Guan, P.Y.; Zhou, L.; et al. Boosting the Efficiency of Electrocatalytic Water Splitting Via in Situ Grown Transition Metal Sulfides: A Review. J. Mater. Chem. A 2024, 12, 28595–28617. [Google Scholar] [CrossRef]
- Tributsch, H.; Bennett, J.C. Electrochemistry and Photochemistry of MoS2 Layer Crystals. I. J. Electroanal. Chem. Interfacial Electrochem. 1977, 81, 97–111. [Google Scholar] [CrossRef]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jorgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Norskov, J.K. Biornimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.C.; Tan, C.L.; Zhang, H. Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew. Chem. Int. Ed. 2016, 55, 8816–8838. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Stern, L.A.; Hu, X.L. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef]
- Tan, C.L.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide Nanosheet-Based Composites. Chem. Soc. Rev. 2015, 44, 2713–2731. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Q.; Wang, Z.C.; Dai, H.J.; Wang, Q.Q.; Yang, R.; Yu, H.; Liao, M.Z.; Zhang, J.; Chen, W.; Wei, Z.; et al. Boundary Activated Hydrogen Evolution Reaction on Monolayer MoS2. Nat. Commun. 2019, 10, 1348. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Q.; Hu, H.; Chen, Z.J.; Ren, X.; Ma, D. Enhancing Electrocatalytic Hydrogen Evolution Via Engineering Unsaturated Electronic Structures in MoS2. Chem. Sci. 2025, 16, 1597–1616. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.F.; Zhang, H. Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides. Chem. Rev. 2024, 124, 10619–10622. [Google Scholar] [CrossRef]
- Zhan, W.Q.; Zhai, X.W.; Li, Y.H.; Wang, M.; Wang, H.; Wu, L.; Tang, X.F.; Zhang, H.J.; Ye, B.J.; Tang, K.B.; et al. Regulating Local Atomic Environment around Vacancies for Efficient Hydrogen Evolution. ACS Nano 2024, 18, 10312–10323. [Google Scholar] [CrossRef]
- Fang, Y.Q.; Pan, J.; He, J.Q.; Luo, R.C.; Wang, D.; Che, X.L.; Bu, K.J.; Zhao, W.; Liu, P.; Mu, G.; et al. Structure Re-Determination and Superconductivity Observation of Bulk 1t MoS2. Angew. Chem. Int. Ed. 2018, 57, 1232–1235. [Google Scholar] [CrossRef]
- Jia, Y.H.; Zhang, Y.C.; Xu, H.Q.; Li, J.; Gao, M.; Yang, X.T. Recent Advances in Doping Strategies to Improve Electrocatalytic Hydrogen Evolution Performance of Molybdenum Disulfide. ACS Catal. 2024, 14, 4601–4637. [Google Scholar] [CrossRef]
- Dai, B.H.; Su, Y.Q.; Guo, Y.Q.; Wu, C.Z.; Xie, Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1t/1t′ Transition Metal Dichalcogenide Nanosheets. Chem. Rev. 2023, 124, 420–454. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, H.R.; Huang, D.; Zhang, S.; Li, Y.G.; Gong, X.G.; Shen, Y.R.; Liu, W.T.; Wu, S.W. Valley and Band Structure Engineering of Folded MoS2 Bilayers. Nat. Nanotechnol. 2014, 9, 825–829. [Google Scholar] [CrossRef]
- Tripathi, M.; Lee, F.; Michail, A.; Anestopoulos, D.; McHugh, J.G.; Ogilvie, S.P.; Large, M.J.; Graf, A.A.; Lynch, P.J.; Parthenios, J.; et al. Structural Defects Modulate Electronic and Nanomechanical Properties of 2d Materials. ACS Nano 2021, 15, 2520–2531. [Google Scholar] [CrossRef]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.Y.; Li, J.J.; Li, Y.L.; Wu, D.J.; Zhang, L.; Ren, X.Z.; He, C.X.; Zhang, Q.L.; Gu, M.; Sun, X.L. Band Engineering Induced Conducting 2h-Phase MoS2 by Pd-S-Re Sites Modification for Hydrogen Evolution Reaction. Adv. Energy Mater. 2022, 12, 2103823. [Google Scholar] [CrossRef]
- Hu, B.J.; Huang, K.; Tang, B.J.; Lei, Z.D.; Wang, Z.M.; Guo, H.Z.; Lian, C.; Liu, Z.; Wang, L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. Nano-Micro Lett. 2023, 15, 15–20. [Google Scholar] [CrossRef]
- Li, X.G.; Guo, Y.X.; Yan, L.G.; Yan, T.; Song, W.; Feng, R.; Zhao, Y.W. Enhanced Activation of Peroxymonosulfate by Ball-Milled MoS2 for Degradation of Tetracycline: Boosting Molybdenum Activity by Sulfur Vacancies. Chem. Eng. J. 2022, 429, 132234. [Google Scholar] [CrossRef]
- Hoang, A.T.; Hu, L.H.; Kim, B.J.; Van, T.T.N.; Park, K.D.; Jeong, Y.; Lee, K.; Ji, S.; Hong, J.; Katiyar, A.K.; et al. Low-Temperature Growth of MoS2 on Polymer and Thin Glass Substrates for Flexible Electronics. Nat. Nanotechnol. 2023, 18, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Su, M.X.; Zhou, W.D.; Liu, L.; Chen, M.Y.; Jiang, Z.Z.; Luo, X.F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C.L. Micro Eddy Current Facilitated by Screwed MoS2 Structure for Enhanced Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 7–11. [Google Scholar] [CrossRef]
- Li, L.Q.; Long, R.; Prezhdo, O.V. Why Chemical Vapor Deposition Grown MoS2 Samples Outperform Physical Vapor Deposition Samples: Time-Domain Ab Initio Analysis. Nano Lett. 2018, 18, 4008–4014. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, F.; Zhao, S.C.; Su, W.T. Recent Progress in the Cvd Growth of 2d Vertical Heterostructures Based on Transition-Metal Dichalcogenides. Crystengcomm 2021, 23, 8239–8254. [Google Scholar] [CrossRef]
- Li, S.H.; Ouyang, D.C.; Zhang, N.; Zhang, Y.; Murthy, A.; Li, Y.; Liu, S.Y.; Zhai, T.Y. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2d Transition Metal Dichalcogenides. Adv. Mater. 2023, 35, 25–33. [Google Scholar] [CrossRef]
- Coclite, A.M.; Howden, R.M.; Borrelli, D.C.; Petruczok, C.D.; Yang, R.; Yagüe, J.L.; Ugur, A.; Chen, N.; Lee, S.; Jo, W.J.; et al. 25th Anniversary Article: Cvd Polymers: A New Paradigm for Surface Modification and Device Fabrication. Adv. Mater. 2013, 25, 5392–5422. [Google Scholar] [CrossRef]
- Tang, Y.J.; Wang, Y.; Wang, X.L.; Li, S.L.; Huang, W.; Dong, L.Z.; Liu, C.H.; Li, Y.F.; Lan, Y.Q. Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 7–11. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhu, X.L.; Tao, H.Y.; Wu, G.; Xu, J.H.; Bao, N.Z. Covalently Aligned Molybdenum Disulfide-Carbon Nanotubes Heteroarchitecture for High-Performance Electrochemical Capacitors. Angew. Chem. Int. Ed. 2021, 60, 21295–21303. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, S.Y.; Lu, Y.; Xiao, Y.X.; Hu, J.; Wu, S.M.; Deng, Z.; Tian, G.; Chang, G.G.; Li, J.; et al. Hierarchical MoS2@TiO2 Heterojunctions for Enhanced Photocatalytic Performance and Electrocatalytic Hydrogen Evolution. Chem. Asian J. 2018, 13, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Chang, J.Q.; Liang, C.; Wang, W.B.; Li, Y.Q.; Li, Z.Q.; Zhang, Y. Size-Dependent and Support-Enhanced Electrocatalysis of 2h-MoS2 for Hydrogen Evolution. Nano Today 2022, 46, 101592. [Google Scholar] [CrossRef]
- Chowdari, R.K.; de León, J.N.; Fuentes-Moyado, S. Template-Free, Facile Synthesis of Nickel Promoted Multi-Walled MoS2 & Nano-Bricks Containing Hierarchical MoS2 Nanotubes from the Bulk Nimo Oxide. Appl. Catal. B Environ. 2021, 298, 120617. [Google Scholar]
- Mohanty, B.; Mitra, A.; Jena, B.; Jena, B.K. MoS2 Quantum Dots as Efficient Electrocatalyst for Hydrogen Evolution Reaction over a Wide Ph Range. Energy Fuels 2020, 34, 10268–10275. [Google Scholar] [CrossRef]
- Li, W.X.; Sun, Z.L.; Ge, R.Y.; Li, J.C.; Li, Y.R.; Cairney, J.M.; Zheng, R.K.; Li, Y.; Li, S.; Li, Q.; et al. Nanoarchitectonics of La-Doped Ni3S2/MoS2 Hetetostructural Electrocatalysts for Water Electrolysis. Small Struct. 2023, 4, 2300175. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, J.; Shan, L.A.; Han, B.; Gao, Q.; Cai, Z.; Zhou, C.G.; Tian, X.K.; Sun, R.M.; Mai, L.Q. Electron Modulated and Phosphate Radical Stabilized 1t-Rich MoS2 for Ultra-Fast-Charged Sodium Ion Storage. Adv. Energy Mater. 2024, 14, 303464. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, E.; Lee, K.S.; Kim, Y.; Piao, Y. Preparation of Three-Dimensionally Interconnected Sulfur-Deficient MoS2/ Nitrogen-Doped Carbon Composite Via Salt Template Method for Separator Modification in Lithium-Sulfur Batteries. Chem. Eng. J. 2024, 489, 151337. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, Z.M.; Wei, Y.Z.; Zhang, X.; Zhang, Q.H.; Gu, L.; Zhang, L.J.; Yang, N.L.; Yu, R.B. High Phase-Purity 1t-MoS2 Ultrathin Nanosheets by a Spatially Confined Template. Angew. Chem. Int. Ed. 2019, 58, 17621–17624. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, F.R.; Sun, N.; Xie, L.B.; Zhi, T.; Zhang, Q.F.; Luo, Z.Z.; Liu, X.; Liu, S.J.; Zhao, Q. Boosting Hydrogen Evolution on MoS2 Via Synergistic Regulation of Interlayer Dislocations and Interlayer Spacing. Chem. Eng. J. 2023, 474, 9. [Google Scholar] [CrossRef]
- Liu, C.Y.; Xie, H.A.; Sui, S.M.; Chen, B.; Ma, L.Y.; Liu, E.Z.; Zhao, N.Q. Interface Engineering of MoS2-Based Ternary Hybrids Towards Reversible Conversion of Sodium Storage. Mater. Today Energy 2022, 26, 100993. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L. Recent Advances in Salt-Assisted Synthesis of 2d Materials. Small 2024, 21, 2410028. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.J.; Wu, Y.; Wang, K.; Guo, H.Z.; Lei, Z.D.; Liu, Z.; Wang, L. Gram-Scale Mechanochemical Synthesis of Atom-Layer MoS2 Semiconductor Electrocatalyst Via Functionalized Graphene Quantum Dots for Efficient Hydrogen Evolution. Small 2024, 20, 2305344. [Google Scholar] [CrossRef]
- Pan, X.L.; Yan, M.Y.; Sun, C.L.; Zhao, K.N.; Luo, W.; Hong, X.F.; Zhao, Y.L.; Xu, L.; Mai, L.Q. Electrochemically Exfoliating MoS2 into Atomically Thin Planar-Stacking through a Selective Lateral Reaction Pathway. Adv. Funct. Mater. 2021, 31, 2007840. [Google Scholar] [CrossRef]
- Kumar, M.; Ramulu, B.; Yu, J.S. Nanoarchitectonic Ni-Doped Edge Dislocation Defect-Rich MoS2 Boosting Catalytic Activity in Electrochemical Hydrogen Production. J. Clean. Prod. 2023, 414, 137589. [Google Scholar] [CrossRef]
- Mai, H.D.; Jeong, S.; Bae, G.N.; Tran, N.M.; Youn, J.S.; Park, C.M.; Jeon, K.J. Pd Sulfidation-Induced 1t-Phase Tuning in Monolayer MoS2 for Hydrogen Evolution Reaction. Adv. Energy Mater. 2023, 13, 2300183. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.Y.; Wu, Y.; Ma, M.Y.; Wang, Y.Q.; Li, Z.W.; Cai, X.B.; Zhang, Y.; Duan, R.H.; Liu, S.; et al. Lateral Heterostructures of Defect-Patterned MoS2 for Efficient Hydrogen Production. Small 2025, 21, 2411077. [Google Scholar] [CrossRef]
- Abidi, I.H.; Giridhar, S.P.; Tollerud, J.O.; Limb, J.; Waqar, M.; Mazumder, A.; Mayes, E.L.H.; Murdoch, B.J.; Xu, C.L.; Bhoriya, A.; et al. Oxygen Driven Defect Engineering of Monolayer MoS2 for Tunable Electronic, Optoelectronic, and Electrochemical Devices. Adv. Funct. Mater. 2024, 34, 2402402. [Google Scholar] [CrossRef]
- Xiang, L.J.; Li, N.; Zhao, L.; Wang, K.W.; Pang, B.X.; Liu, Z.P.; Guo, J. Boosting Alkaline Hydrogen Evolution Via in-Plane Heterostructure Construction with Ultra-Exposed Heterointerfaces. Chem. Eng. J. 2024, 499, 155833. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, X.K.; Song, X.J.; Jiang, H.Q. Collaborative Effect between Single-Atom Re and S Vacancy on Modulating Localized Electronic Structure of MoS2 Catalysts for Alkaline Hydrogen Evolution. Nano Res. 2024, 17, 9507–9517. [Google Scholar] [CrossRef]
- Lin, C.Z.; Liu, Y.P.; Sun, Y.X.; Wang, Z.Y.; Xu, H.; Li, M.T.; Feng, J.T.; Hou, B.; Yan, W. TiO2 Nanorods Based Self-Supported Electrode of 1t/2h MoS2 Nanosheets Decorated by Ag Nano-Particles for Efficient Hydrogen Evolution Reaction. Chin. Chem. Lett. 2023, 34, 108265. [Google Scholar] [CrossRef]
- Harikrishnan, K.; Hoque, A.; Patel, R.; Gaur, U.K.; Sharma, M. Enhanced Hydrogen Evolution Performance of Magnesium-Doped Molybdenum Disulfide Nanosheets under Acidic Conditions. J. Environ. Chem. Eng. 2025, 13, 116866. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, S.J.; Xu, Y.; Ge, R.Y.; Qu, J.T.; Zhu, M.Y.; Liu, Y.; Cairney, J.M.; Zheng, R.K.; Li, S.; et al. FeS2 Bridging Function to Enhance Charge Transfer between MoS2 and g-C3N4 for Efficient Hydrogen Evolution Reaction. Chem. Eng. J. 2021, 421, 127804. [Google Scholar] [CrossRef]
- Sun, T.; Yang, T.; Zang, W.J.; Li, J.; Sheng, X.Y.; Liu, E.Z.; Li, J.L.; Hai, X.; Lin, H.H.; Chuang, C.H.; et al. Atomic Gap-State Engineering of MoS2 for Alkaline Water and Seawater Splitting. ACS Nano 2025, 19, 5447–5459. [Google Scholar] [CrossRef]
- Das, D.; Manna, J.; Bhattacharyya, T.K. Efficient Hydrogen Evolution Via 1t-MoS2/Chlorophyll-a Heterostructure: Way toward Metal Free Green Catalyst. Small Methods 2023, 7, 201446. [Google Scholar] [CrossRef]
- Le, K.T.; Pham, N.N.T.; Liao, Y.S.; Ranjan, A.; Lin, H.Y.; Chen, P.H.; Nguyen, H.; Lu, M.Y.; Lee, S.G.; Wu, J.M. Piezoelectricity of Strain-Induced Overall Water Splitting of Ni(Oh)2/MoS2 Heterostructure. J. Mater. Chem. A 2023, 11, 3481–3492. [Google Scholar] [CrossRef]
- Shah, S.A.; Xu, L.; Sayyar, R.; Bian, T.; Liu, Z.Y.; Yuan, A.H.; Shen, X.P.; Khan, I.; Tahir, A.A.; Ullah, H. Growth of MoS2 Nanosheets on M@N-Doped Carbon Particles (M = Co, Fe or Cofe Alloy) as an Efficient Electrocatalyst toward Hydrogen Evolution Reaction. Chem. Eng. J. 2022, 428, 132126. [Google Scholar] [CrossRef]
- Yu, X.B.; Yan, F.; Zhao, Y.; Geng, B.; Ma, X.Z.; Wu, L.L.; Zhang, X.T.; Chen, Y.J. A Heterostructure of Interlayer-Expanded 1t Phase MoS2 and Spherical MoO2 for Efficient and Stable Hydrogen Evolution. Appl. Catal. B Environ. Energy 2024, 343, 123534. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.L.; Wang, L.; Ouyang, C.Y.; Liang, H.W.; Zhong, S.L. A Metal-Organic Frameworks Derived 1t-MoS2 with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution. Small 2023, 19, 2205736. [Google Scholar] [CrossRef]
- Liu, H.H.; Liu, Q.Q.; Shao, Y.F.; Wang, R.R.; Cheng, M.; Hu, J.; Wei, T.; Liu, B.; Jiang, H.F.; Qi, L.; et al. Single-Atom Nickel Encapsulated in Nanosheet-Coiled Rgo-Ctab-MoS2 Nanoflowers for High-Efficiency and Long-Term Hydrogen Evolution in Acidic Medium. Adv. Funct. Mater. 2025, early view, 2425826. [Google Scholar] [CrossRef]
- Dai, X.G.; Wu, X.B.; Yao, B.Y.; Hong, Z.Y.; Jiang, T.; Wang, Z.L. Triboelectric Nanogenerators Powered Hydrogen Production System Using MoS2/Ti3C2 as Catalysts. Adv. Funct. Mater. 2024, 34, 2406188. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Q.F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y.T.; Zhang, Z.Y.; Zhang, Q.; Fan, H.I.; Luo, W.B.; et al. Synergistic Pt Doping and Phase Conversion Engineering in Two-Dimensional MoS2 for Efficient Hydrogen Evolution. Nano Energy 2021, 84, 105898. [Google Scholar] [CrossRef]
- Huang, Z.D.; Bi, Y.Q.; She, J.J.; Liu, Y.; Feng, S.Z.; Xu, C.X.; Sun, D.F.; Liu, H. Vacancy-Occupation Triggered Phase Transformation in Molybdenum Disulfide with Reduced Energy Barrier for Enhanced Alkaline Water Electrolysis. J. Energy Chem. 2025, 106, 619–630. [Google Scholar] [CrossRef]
- Shi, X.L.; Lin, D.M.; Xiao, Z.R.; Weng, Y.B.; Zhou, H.X.; Long, X.Y.; Ding, Z.Y.; Liang, F.Y.; Huang, Y.; Chen, G.H.; et al. Exfoliation of Bulk 2h-MoS2 into Bilayer 1t-Phase Nanosheets Via Ether-Induced Superlattices. Nano Res. 2024, 17, 5705–5711. [Google Scholar] [CrossRef]
- Li, X.T.; Sun, X.N.; Yu, H.F.; Li, H.T.; Sun, X.Y.; Tao, X.; Zheng, Y.Z. Pseudo Metallic (1t) Molybdenum Disulfide for Efficient Photo/Electrocatalytic Water Splitting. Appl. Catal. B Environ. Energy 2022, 307, 121156. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jorgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, H.B.; Wang, S.H.; Ding, D.; Chen, M.S.; Liu, C.; Tian, Z.Q.; Novoselov, K.S.; Ma, C.; Deng, D.H.; et al. Multiscale Structural and Electronic Control of Molybdenum Disulfide Foam for Highly Efficient Hydrogen Production. Nat. Commun. 2017, 8, 14430. [Google Scholar] [CrossRef]
- Liu, L.; Liu, N.; Chen, B.H.; Dai, C.N.; Wang, N. Recent Modification Strategies of MoS2 Towards Electrocatalytic Hydrogen Evolution. Catalysts 2024, 14, 126. [Google Scholar] [CrossRef]
- Kang, J.; Seo, J.W.T.; Alducin, D.; Ponce, A.; Yacaman, M.J.; Hersam, M.C. Thickness Sorting of Two-Dimensional Transition Metal Dichalcogenides Via Copolymer-Assisted Density Gradient Ultracentrifugation. Nat. Commun. 2014, 5, 75478. [Google Scholar] [CrossRef]
- Liu, F.; Cai, X.H.; Tang, Y.; Liu, W.Q.; Chen, Q.W.; Dong, P.X.; Xu, M.W.; Tan, Y.Y.; Bao, S.J. Nano-Ni-Induced Electronic Modulation of MoS2 Nanosheets Enables Energy-Saving H2 Production and Sulfide Degradation. Energy Environ. Mater. 2024, 7, e12644. [Google Scholar] [CrossRef]
- Kumar, H.; Bharti, B.; Aslam, S.; Sagar, R.U.R.; Wang, K.; Gan, L.; Hua, P.; Zeng, X.R.; Su, Y.K. Structural Tailoring of Molybdenum Disulfide by Argon Plasma for Efficient Electrocatalysis Performance. Int. J. Energy Res. 2020, 44, 7846–7854. [Google Scholar] [CrossRef]
- Zhou, Q.Q.; Wang, Z.Y.; Yuan, H.D.; Wang, J.D.; Hu, H. Rapid Hydrogen Adsorption-Desorption at Sulfur Sites Via an Interstitial Carbon Strategy for Efficient Her on MoS2. Appl. Catal. B Environ. 2023, 332, 122750. [Google Scholar] [CrossRef]
- Jiao, S.L.; Kong, M.S.; Hu, Z.P.; Zhou, S.M.; Xu, X.X.; Liu, L. Pt Atom on the Wall of Atomic Layer Deposition (Ald)-Made MoS2 Nanotubes for Efficient Hydrogen Evolution. Small 2022, 18, 2105129. [Google Scholar] [CrossRef]
- Li, W.; Qin, Q.Y.; Li, X.; Ying, H.F.; Shen, D.Y.; Liu, J.L.; Li, J.; Li, B.; Wu, R.X.; Duan, X.D. Robust Growth of 2d Transition Metal Dichalcogenide Vertical Heterostructures Via Ammonium-Assisted Cvd Strategy. Adv. Mater. 2024, 36, 2408367. [Google Scholar] [CrossRef]
- Li, X.H.; Han, S.H.; Qiao, Z.L.; Zeng, X.F.; Cao, D.P.; Chen, J.F. Ru Monolayer Island Doped MoS2 Catalysts for Efficient Hydrogen Evolution Reaction. Chem. Eng. J. 2023, 453, 139803. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhu, T.Y.; Wang, Y.; Cui, J.W.; Sun, J.; Yan, J.; Qin, Y.Q.; Shu, X.; Zhang, Y.; Wu, J.J.; et al. Self-Assembly of 0d/2d Homostructure for Enhanced Hydrogen Evolution. Mater. Today 2020, 36, 83–90. [Google Scholar] [CrossRef]
- Gong, F.L.; Liu, Y.H.; Zhao, Y.; Liu, W.; Zeng, G.; Wang, G.Q.; Zhang, Y.H.; Gong, L.H.; Liu, J. Universal Sub-Nanoreactor Strategy for Synthesis of Yolk-Shell MoS2 Supported Single Atom Electrocatalysts toward Robust Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2023, 62, 8–13. [Google Scholar]
- Kong, D.S.; Wang, H.T.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef]
- Han, W.Q.; Ning, J.; Long, Y.; Qiu, J.J.; Jiang, W.F.; Wang, Y.; Shah, L.A.; Yang, D.; Dong, A.A.; Li, T.T. Unlocking the Ultrahigh-Current-Density Hydrogen Evolution on 2H-MoS2 via Simultaneous Structural Control across Seven Orders of Magnitude. Adv. Energy. Mater. 2023, 13, 2300145. [Google Scholar] [CrossRef]
- Han, X.S.; Zhang, Z.H.; Wang, R.M. A Mini Review: Phase Regulation for Molybdenum Dichalcogenide Nanomaterials. Nanomaterials 2024, 14, 984. [Google Scholar] [CrossRef] [PubMed]
- Boll, F.; Pozzati, M.; Crisci, M.; Smarsly, B.; Gatti, T.; Wang, M.J. In Situ Growth of Layered 1t-MoS2 onto Carbon Nanofibers as a Strategy Towards Advanced Hybrid Materials for Electrochemical Energy Storage and Catalysis. Nanoscale 2025, 17, 10706–10717. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.T.; Yu, J.M.; Lyu, Z.; Zhang, Q.W.; Lee, T.H.; Pang, H.; Kang, D.J. Durable Hierarchical Phosphorus-Doped Biphase MoS2 Electrocatalysts with Enhanced H* adsorption. Carbon Energy 2024, 6, 11–17. [Google Scholar] [CrossRef]
- Chen, W.S.; Gu, J.J.; Du, Y.P.; Song, F.; Bu, F.X.; Li, J.H.; Yuan, Y.; Luo, R.C.; Liu, Q.L.; Zhang, D. Achieving Rich and Active Alkaline Hydrogen Evolution Heterostructures Via Interface Engineering on 2d 1t-MoS2 Quantum Sheets. Adv. Funct. Mater. 2020, 30, 7–12. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Zhang, X.; Lin, X.Q.; Liu, G.G.; Ling, C.Y.; Xi, S.B.; Chen, B.; Ge, Y.Y.; Tan, C.L.; Lai, Z.C.; et al. Phase-Dependent Growth of Pt on MoS2 for Highly Efficient H2 Evolution. Nature 2023, 621, 300–305. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Nie, K.K.; Qu, X.Y.; Li, X.H.; Li, B.J.; Yuan, Y.L.; Chong, S.K.; Liu, P.; Li, Y.G.; Yin, Z.Y.; et al. General Bottom-up Colloidal Synthesis of Nano-Monolayertransition-Metal Dichalcogenides with High 1t′-Phase Purity. J. Am. Chem. Soc. 2022, 144, 4863–4873. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y.J.; Luo, X.H.; Yu, L.; Li, H.X.; Li, Y.J. Se and O Co-Insertion Induce the Transition of MoS2 from 2h to 1t Phase for Designing High-Active Electrocatalyst of Hydrogen Evolution Reaction. Chem. Eng. J. 2021, 425, 130611. [Google Scholar] [CrossRef]
- Kiran, P.S.; Kumar, K.V.; Pandit, N.; Indupuri, S.; Kumar, R.; Wagh, V.V.; Islam, A.; Keshri, A.K. Scaling up Simultaneous Exfoliation and 2h to 1t Phase Transformation of MoS2. Adv. Funct. Mater. 2024, 34, 14–22. [Google Scholar] [CrossRef]
- Lai, Z.C.; Yao, Y.; Li, S.Y.; Ma, L.; Zhang, Q.H.; Ge, Y.Y.; Zhai, W.; Chi, B.L.; Chen, B.; Li, L.J.; et al. Salt-Assisted 2h-to-1t′ Phase Transformation of Transition Metal Dichalcogenides. Adv. Mater. 2022, 34, 2201194. [Google Scholar] [CrossRef]
- Huang, T.X.; Cong, X.; Wu, S.S.; Wu, J.B.; Bao, Y.F.; Cao, M.F.; Wu, L.W.; Lin, M.L.; Wang, X.; Tan, P.H.; et al. Visualizing the Structural Evolution of Individual Active Sites in MoS2 During Electrocatalytic Hydrogen Evolution Reaction. Nat. Catal. 2024, 7, 646–654. [Google Scholar] [CrossRef]
- Xu, J.; Shao, G.L.; Tang, X.; Lv, F.; Xiang, H.Y.; Jing, C.F.; Liu, S.; Dai, S.; Li, Y.G.; Luo, J.; et al. Frenkel-Defected Monolayer MoS2 Catalysts for Efficient Hydrogen Evolution. Nat. Commun. 2022, 13, 299297. [Google Scholar] [CrossRef]
- Alharbi, T.M.D.; Elmas, S.; Alotabi, A.S.; Andersson, M.R.; Raston, C.L. Continuous Flow Fabrication of MoS2 Scrolls for Electrocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2022, 10, 9325–9333. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, S.W.; Li, Q.H.; Wu, X.; Zhang, J.; Zhang, H.B.; Zhang, J. Vertically Aligned MoS2 with in-Plane Selectively Cleaved Mo-S Bond for Hydrogen Production. Nano Lett. 2021, 21, 1848–1855. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X.L.; Zou, L.W.; Cai, Z.; Jiang, J.M.; Zhou, S.; Zhang, B.; et al. Controllable Thermochemical Generation of Active Defects in the Horizontal/Vertical MoS2 for Enhanced Hydrogen Evolution. Adv. Funct. Mater. 2023, 33, 9–13. [Google Scholar] [CrossRef]
- Yin, Y.; Han, J.C.; Zhang, Y.M.; Zhang, X.H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.J.; Wang, Y.; Zhang, Z.H.; et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, S.; Qian, H. Interface Engineering of Advanced Electrocatalysts toward Alkaline Hydrogen Evolution Reactions. Chin. J. Catal. 2024, 66, 1–19. [Google Scholar] [CrossRef]
- Wang, K.W.; Yu, K.F.; Xu, S.A.; Yuan, S.S.; Xiang, L.J.; Pang, B.X.; Zheng, J.Q.; Li, N. Synergizing Lattice Strain and Electron Transfer in Tmss@ 1t-MoS2 in-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2023, 328, 122445. [Google Scholar] [CrossRef]
- Chaudhary, A.; Khan, R.A.; Almadhhi, S.S.; Alsulmi, A.; Ahmad, K.; Oh, T.H. Hydrothermal Synthesis of La-MoS2 and Its Catalytic Activity for Improved Hydrogen Evolution Reaction. Catalysts 2024, 14, 893. [Google Scholar] [CrossRef]
- Shan, A.X.; Teng, X.A.; Zhang, Y.; Zhang, P.F.; Xu, Y.Y.; Liu, C.R.; Li, H.; Ye, H.Y.; Wang, R.M. Interfacial Electronic Structure Modulation of Pt-MoS2 Heterostructure for Enhancing Electrocatalytic Hydrogen Evolution Reaction. Nano Energy 2022, 94, 106913. [Google Scholar] [CrossRef]
- Wang, T.; Chang, P.; Sun, Z.P.; Wang, X.H.; Tao, J.G.; Guan, L.X. Interface Prompted Highly Efficient Hydrogen Evolution of MoS2/CoS2 Heterostructures in a Wide Ph Range. Phys. Chem. Chem. Phys. 2023, 25, 13966–13977. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.P.; Yu, J.; Ye, Q.T.; Yang, L.; Li, Y.; Fan, H.J. Biaxially Strained MoS2 Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Adv. Mater. 2022, 34, 202195. [Google Scholar] [CrossRef]
- Kour, P.; Kour, S.; Sharma, A.L.; Yadav, K. MoS2-Based Core-Shell Nanostructures: Highly Efficient Materials for Energy Storage and Conversion Applications. J. Energy Storage 2023, 66, 107393. [Google Scholar] [CrossRef]
- Zhou, J.S.; Leung, T.K.; Peng, Z.H.; Li, X.; Chen, K.D.; Yuan, J.X.; Leung, M.K.H. Balancing Volmer Step by Superhydrophilic Dual-Active Domains for Enhanced Hydrogen Evolution. Small 2023, 19, 11–17. [Google Scholar] [CrossRef]
- Zhu, W.J.; Zhang, B.F.; Yang, Y.; Zhao, M.H.; Fang, Y.W.; Cui, Y.; Tian, J. Enhanced Electrocatalytic Performance of P-Doped MoS2/Rgo Composites for Hydrogen Evolution Reactions. Molecules 2025, 30, 1205. [Google Scholar] [CrossRef]
- Li, Y.G.; Wang, H.L.; Xie, L.M.; Liang, Y.Y.; Hong, G.S.; Dai, H.J. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Deng, D.D.; Xu, K.; Simonson, N.; Wang, K.; Zhang, K.H.; Li, J.; Feenstra, R.; Fullerton-Shirey, S.K.; Robinson, J.A. Properties of Synthetic Epitaxial Graphene/Molybdenum Disulfide Lateral Heterostructures. Carbon 2017, 125, 551–556. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, X.; Liu, S.Y.; Chiang, C.L.; Kuai, X.X.; Peng, C.K.; Lin, Y.C.; Meng, X.; Zhao, J.Q.; Choi, J.H.; et al. Structural and Electronic Optimization of MoS2 Edges for Hydrogen Evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584. [Google Scholar] [CrossRef]
- Dong, Y.R.; Wang, T.; Jie, P.F.; Li, M.S.; Wu, T.L.; Yang, W.L. Graphdiyne Oxide-Sandwiched MoS2 Heterostructure with Sufficient Hetero-Interphase and Highly Expanded Interlayer for Efficient Hydrogen Evolution. Chem. Eng. J. 2024, 484, 149457. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Li, H.S.; Kuchayita, K.K.; Huang, H.C.; Su, W.N.; Cheng, C.C. Exfoliated 2d Nanosheet-Based Conjugated Polymer Composites with P-N Heterojunction Interfaces for Highly Efficient Electrocatalytic Hydrogen Evolution. Adv. Sci. 2024, 11, 15–22. [Google Scholar] [CrossRef]
Synthesis Method | Advantages | Disadvantages |
---|---|---|
Mechanical ball milling | Simple operation and low cost | Difficult to control particle size |
Suitable for large-scale production | Poor crystallinity and potential impurities | |
Can introduce defects and heterostructures | Lack of morphology uniformity | |
Chemical vapor deposition | High crystal quality and large-area monolayer growth | Complex process and high cost |
Precise control over layer number and thickness | Challenging for large-scale production | |
Wet chemical synthesis | Mild reaction conditions with simple equipment | Lower purity and crystallinity |
Good control over morphology (nanosheets, quantum dots, etc.) | Complex post-treatment | |
Easy to introduce doping or functionalization | Possible byproducts and limited structural precision | |
Template method | Highly controllable structure replication | Template removal is complicated |
Enables porous structures with high surface area | Limited by template availability |
Method | Electrocatalyst | Main Modulation Strategies | Electrolyte | η/mV @ 10 mA cm–2 | Tafel Slope (mV dec–1) | Year | Ref |
---|---|---|---|---|---|---|---|
Mechanical ball milling | Atom-layered MoS2 nanosheets | Increasing edges active sites | 0.5 M H2SO4 | 270 | 83.3 | 2023 | [54] |
Few-layer MoS2 | Increasing edges active sites | 0.5 M H2SO4 | 127 | 199 | 2021 | [55] | |
CVD | Ni/MoS2 | Doping | 1 M KOH | 89 | 59 | 2023 | [56] |
PdxSy/1T-MoS2 | Phase engineering | 0.5 M H2SO4 | 78 | 39.8 | 2023 | [57] | |
MoS2xTe2(1−x) | doping | 1 M KOH | 164 | 71.4 | 2025 | [58] | |
LP-MoS2 | Vacancies engineering | 0.5 M H2SO4 | 35 | 140 | 2024 | [59] | |
Co2P/1T-MoS2 | Heterojunction structure | 1 M KOH | 37 | 88 | 2024 | [60] | |
Re-MoS2-Vs | Doping | 1 M KOH | 99 | 89 | 2024 | [61] | |
Ag NPs/1T(2H) MoS2/TNRs | Phase engineering | 0.5 M H2SO4 | 118 | 38.61 | 2023 | [62] | |
Wet chemical synthesis | Mg-MoS2 | Doping | 0.5 M H2SO4 | 203 | 77 | 2025 | [63] |
g–C3N4/FeS2/MoS2 | Heterojunction structure | 0.5 M H2SO4 | 193 | 87.7 | 2021 | [64] | |
Co1/MoS2 | Doping | 1 M KOH | 159 | 41 | 2025 | [65] | |
1T MoS2/chlorophyll | Phase engineering | 0.5 M H2SO4 | 68 | 15.56 | 2023 | [66] | |
Ni(OH)2/MoS2 NF | Heterojunction structure | 1 M KOH | 155 | 62.1 | 2023 | [67] | |
CoFe/NDC/MoS2 | Heterojunction structure | 0.5 M H2SO4 | 64 | 45 | 2021 | [68] | |
MoO2/E/MoS2 | Heterojunction structure | 1 M KOH | 99 | 109 | 2023 | [69] | |
Mo-MOFs | Heterojunction structure | 0.5 M H2SO4 | 98 | 52 | 2022 | [70] | |
Ni SA/rGO-CTAB-MoS2 | Doping | 0.5 M H2SO4 | 79 | 32.28 | 2025 | [71] | |
MoS2/Ti3C2 | Heterojunction structure | 1 M KOH | 124 | 24.63 | 2024 | [72] | |
Pt-MoS2 | Phase engineering | 0.5 M H2SO4 | 88.43 | 55.69 | 2021 | [73] | |
1T-MoS2@NPC | Phase engineering | 1 M KOH | 148 | 38 | 2025 | [74] | |
Template method | 1T-phase nanosheets MoS2 | Phase engineering | 0.5 M H2SO4 | 199 | 54 | 2024 | [75] |
Pseudo-1T MoS2 | Phase engineering and doping | 0.5 M H2SO4 | 165 | 44 | 2022 | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Xu, Y.; Shan, A.; Wang, R. Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction. Catalysts 2025, 15, 626. https://doi.org/10.3390/catal15070626
Du X, Xu Y, Shan A, Wang R. Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction. Catalysts. 2025; 15(7):626. https://doi.org/10.3390/catal15070626
Chicago/Turabian StyleDu, Xinyue, Yuqing Xu, Aixian Shan, and Rongming Wang. 2025. "Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction" Catalysts 15, no. 7: 626. https://doi.org/10.3390/catal15070626
APA StyleDu, X., Xu, Y., Shan, A., & Wang, R. (2025). Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction. Catalysts, 15(7), 626. https://doi.org/10.3390/catal15070626