Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review
Abstract
1. Introduction
2. Quantum Dots—Preparation, Characterization, and Properties
- -
- size, which determines the optical band gap of the quantum dot (the higher the band gap, the higher the energy of the photoexcited electrons), surface (a larger surface means more likely absorption of organic molecules), the surface-to-volume ratio (smaller quantum dots have relatively more atoms on the surface that are reactive in contrast to the atoms present inside the quantum dot), and the path of photogenerated carriers to the reactive surface (smaller size means shorter path and thus smaller probability of electron and hole recombination),
- -
- optical properties, which determine which photons are absorbed and how likely they are to be absorbed (i.e., the absorption coefficient should be high),
- -
- electric properties, which influences the probability of electron and positive hole recombination.
3. Quantum Dots for Photo-Based Removal of Pesticides
3.1. Influence of Operational Parameters on the Efficiency and Kinetics of Photo-Based Processes for Removal of Pesticides
3.1.1. Influence of Pollutant Concentration
3.1.2. Influence of Catalyst Concentration
3.1.3. Influence of Temperature
3.1.4. Influence of the pH of the Reaction Medium
3.1.5. Presence of Oxidizing Agents
3.2. Examples of the Application of Quantum Dots in Photo-Based Degradation of Pesticides
3.2.1. Photocatalytic Degradation
3.2.2. Photo-Fenton Degradation
4. Quantum Dots for Photo-Based Removal of Flame Retardants
4.1. Examples of the Application of Quantum Dots in the Photo-Based Degradation of Flame Retardants
4.1.1. Photodegradation of 4-Bromophenol by Graphitic Carbon Nitride with Graphene Quantum Dots
4.1.2. Double Heterojunction Carbon Quantum Dots (CQDs)/CeO2/BaFe12O19 for the Degradation of Tetrabromobisphenol A (TBBPA)
4.1.3. TiO2 Nanomaterials with Various Types of QD to Remove Tetrabromobisphenol-A
4.1.4. Detection of Melamine by Digital Image Colorimetry Using Carbon Nitride Quantum Dots in a Cellulose Matrix with a Smartphone-Based Portable Device
5. Quantum Dots for Photo-Based Removal of Dyes
5.1. Examples of the Application of Quantum Dots for the Photo-Based Degradation of Dyes
5.1.1. Carbon Quantum Dots with TiO2 Nanocomposite for the Photodegradation of Rhodamine B
5.1.2. Carbon Quantum Dots for the Photodegradation of Methylene Blue
5.1.3. TiO2 and GQD Compounds for the Photodegradation of Methylene Blue
5.1.4. Phosphorus-Doped Graphene Quantum Dots Loaded on TiO2 for Enhanced Photodegradation of the Methyl Orange
5.1.5. Methyl Orange Piezodegradation via GQD/ZnO S-Scheme—A Different Method of Degradation with QD Usage
6. Quantum Dots for Photo-Based Removal of Endocrine Disrupting Compounds
6.1. Examples of the Application of Quantum Dots for the Photo-Based Degradation of Endocrine Disrupting Compounds
6.1.1. Degradation of Sulfamethoxazole (SMX) Using a Hybrid CuOx–BiVO4/SPS/Solar System
6.1.2. Hybrid Quantum Dots of Cadmium-Doped in Chitosan Forming Cd/CdIn2S4 for the Photodegradation of Ofloxacin (OFL) and Para-Nitrophenol (PNP)
6.1.3. Carbon Dots Modified with g-C3N4 for Photo Oxidation of Bisphenol-A (BPA)
6.1.4. Photocatalytic Degradation of Fluoroquinolone and Norfloxacin (NOFX) by Mn:ZnS Quantum Dots
6.1.5. Photocatalytic Degradation of Diclofenac (DCF) by Nitrogen-Doped Carbon Quantum Dot-Graphitic Carbon Nitride (CNQD)
6.1.6. Porous Fe2O3 Nanoparticles Coupled with CdS Quantum Dots for the Degradation of Bisphenol A
6.1.7. Marimo-like Bi2WO6 and Mammillaria-like ZnO for the Photodegradation of Dimethyl Phthalate (DMP)
6.1.8. Hydrothermally Synthesized rGO-TiO2 Composite for Ethylparaben Degradation
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Compendium of Chemical Terminology. Available online: https://goldbook.iupac.org/ (accessed on 28 February 2025).
- Cademartiri, L.; Ozin, G.A. Concepts of Nanochemistry; Wiley-WCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. J. Mater. Sci. Technol. 2023, 164, 59–67. [Google Scholar] [CrossRef]
- Li, S.; Rong, K.; Wang, X.; Shen, C.; Yang, F.; Zhang, Q. Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Phys. Chim. Sin. 2024, 40, 2403005. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Wen, J.; Zhou, L.; Tang, Q.; Xiao, X.; Sun, S. Photocatalytic degradation of organic pollutants by carbon quantum dots functionalized g-C3N4: A review. Ecotoxicol. Environ. Saf. 2023, 262, 115133. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, L.; Chen, J.-F.; Dai, L. Can graphene quantum dots cause DNA damage in cells? Nanoscale 2015, 7, 9894–9901. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, T.; Tang, M. The DNA damage potential of quantum dots: Toxicity, mechanism and challenge. Environ. Pollut. 2023, 317, 120676. [Google Scholar] [CrossRef]
- Kamble, S.; Bhosale, K.; Mohite, M.; Navale, S. Methods of Preparation of Nanoparticles. Int. J. Adv. Res. Sci. Commun. Technol. 2023, 3, 121–127. [Google Scholar] [CrossRef]
- Mohamed, W.A.A.; El-Gawad, H.A.; Mekkey, S.; Galal, H.; Handal, H.; Mousa, H.; Labib, A. Quantum dots synthetization and future prospect applications. Nanotechnol. Rev. 2021, 10, 1926–1940. [Google Scholar] [CrossRef]
- Drbohlavova, J.; Adam, V.; Kizek, R.; Hubalek, J. Quantum Dots—Characterization, Preparation and Usage in Biological Systems. Int. J. Mol. Sci. 2009, 10, 656–673. [Google Scholar] [CrossRef] [PubMed]
- Targhan, H.; Rezaei, A.; Aliabadi, A.; Zheng, H.; Cheng, H.; Aminabhavi, T.M. Adsorptive and Photocatalytic Degradation of Imidacloprid Pesticide from Wastewater via the Fabrication of ZIF-CdS/Tpy Quantum Dots. Chem. Eng. J. 2024, 482, 148983. [Google Scholar] [CrossRef]
- Targhan, H.; Rezaei, A.; Aliabadi, A.; Ramazani, A.; Zhao, Z.; Shen, X.; Zheng, H. Photocatalytic Removal of Imidacloprid Pesticide from Wastewater Using CdS QDs Passivated by CQDs Containing Thiol Groups. Sci. Rep. 2024, 14, 530. [Google Scholar] [CrossRef]
- Nekooei, A.; Miroliaei, M.R.; Shahabi Nejad, M.; Sheibani, H. Enhanced Visible-Light Photocatalytic Activity of ZnS/S-Graphene Quantum Dots Reinforced with Ag2S Nanoparticles. Mater. Sci. Eng. B 2022, 284, 115884. [Google Scholar] [CrossRef]
- Malik, A.Q.; Tabasum, S.; Rani, S.; Lokhande, P.; Singh, P.P.; Mooney, J.; Singh, J.; Alberto, H.-A.C.; Sharma, A.; Aepuru, R.; et al. Fluorescent CdS QDs Modified with Molecular Imprinted Polymer for the Photodegradation of Imidacloprid and Buprofezin Pesticides Under Visible Light. J. Inorg. Organomet. Polym. 2023, 33, 3468–3484. [Google Scholar] [CrossRef]
- Idrees, S.A.; Jamil, L.A.; Omer, K.M. Silver-Loaded Carbon and Phosphorous Co-Doped Boron Nitride Quantum Dots (Ag@CP-BNQDs) for Efficient Organic Waste Removal: Theoretical and Experimental Investigations. ACS Omega 2022, 7, 37620–37628. [Google Scholar] [CrossRef]
- Muangmora, R.; Rojviroon, O.; Kemacheevakul, P.; Chuangchote, S.; Rajendran, R.; Phouheuanghong, P.; Arumugam, P.; Paramasivam, S.; Rojviroon, T. Spent Coffee Ground-Derived Carbon Quantum Dot Composite with Metal Oxides for Photocatalytic Degradation of Carbaryl in Water and Antibacterial Application. J. Water Process Eng. 2025, 70, 107145. [Google Scholar] [CrossRef]
- Swedha, M.; Okla, M.K.; Abdel-Maksoud, M.A.; Kokilavani, S.; Kamwilaisak, K.; Sillanpää, M.; Khan, S.S. Photo-Fenton System Fe3O4/NiCu2S4 QDs towards Bromoxynil and Cefixime Degradation: A Realistic Approach. Surf. Interfaces 2023, 38, 102764. [Google Scholar] [CrossRef]
- Pervez Md, N.; Ma, S.; Huang, S.; Naddeo, V.; Zhao, Y. Photo-Fenton Degradation of Ciprofloxacin by Novel Graphene Quantum Dots/α-FeOOH Nanocomposites for the Production of Safe Drinking Water from Surface Water. Water 2022, 14, 2260. [Google Scholar] [CrossRef]
- John, B.K.; Mathew, B. Nitrogen and Sulphur Co-Doped Carbon Quantum Dot Integrated Bismuth Oxide Nanocomposite for Photocatalytic Degradation and Electrochemical Sensing Applications. Opt. Mater. 2023, 139, 113819. [Google Scholar] [CrossRef]
- Abbasi, M.; Aziz, R.; Rafiq, M.T.; Bacha, A.U.R.; Ullah, Z.; Ghaffar, A.; Mustafa, G.; Nabi, I.; Hayat, M.T. Efficient Performance of InP and InP/ZnS Quantum Dots for Photocatalytic Degradation of Toxic Aquatic Pollutants. Environ. Sci. Pollut. Res. 2024, 31, 19986–20000. [Google Scholar] [CrossRef] [PubMed]
- Grover, T.; Khandual, A.; Chatterjee, K.N.; Jamdagni, R. Flame retardants: An overview. Colourage 2014, 61, 29–36. [Google Scholar]
- Feiteiro, J.; Mariana, M.; Cairrao, E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. Environ. Pollut. 2021, 285, 117475. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Altarawneh, M.; Siddigue, K.; Conesa, J.A.; Ortuno, N.; Dlugogorski, B.Z. Photodecomposition properties of brominated flame retardants (BFRs). Ecotoxicol. Environ. Saf. 2020, 192, 110272. [Google Scholar] [CrossRef]
- Sahu, R.S.; Dubey, A.; Shih, Y.-h. Novel metal-free in-plane functionalized graphitic carbon nitride with graphene quantum dots for effective photodegradation of 4-bromophenol. Carbon 2021, 182, 89–99. [Google Scholar] [CrossRef]
- Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. [Google Scholar] [CrossRef]
- Zhang, Z.; He, D.; Zhou, Y.; Bai, E.; Qu, J.; Zhang, Y.-n. Fabrication of black phosphorus/CdS heterostructure with enhancement photocatalytic degradation activity for tetrabromobisphenol A and toxicity prediction of intermediates. Environ. Res. 2024, 256, 119060. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Fang, L.; Gao, H.; Han, M.; Chen, X.; Xia, Y.; Xie, L.; Yang, H. Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis. Nucl. Anal. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Chen, P.; Di, S.; Qiu, X.; Zhu, S. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl. Surf. Sci. 2022, 587, 152889. [Google Scholar] [CrossRef]
- Vahabi, H.; Lopez-Cuesta, J.-M.; Chivas-Joly, C. 6-High-performance fire-retardant polyamide materials. In Novel Fire Retardant Polymers and Composite Materials; Woodhead Publishing: Sawston, UK, 2017; pp. 147–170. [Google Scholar] [CrossRef]
- Kong, Y.; Lei, T.; He, Y.; Song, G. Background-free room temperature phosphorescence and digital image colorimetry detection of melamine by carbon nitride quantum dots in cellulose matrix with smartphone-based portable device. Food Chem. 2022, 390, 133135. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Kadhom, M.; Khan, I.; Aziz, K.H.H.; Alli, Y.A. Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions. Green Chem. Eng. 2024, 5, 440–460. [Google Scholar] [CrossRef]
- Chen, J.; Shu, J.; Anqi, Z.; Juyuan, H.; Yan, Z.; Chen, J. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine. Diam. Relat. Mater. 2016, 70, 137–144. [Google Scholar] [CrossRef]
- Tong, S.; Zhou, J.; Ding, L.; Zhou, C.; Liu, Y.; Li, S.; Meng, J.; Zhu, S.; Chatterjee, S.; Liang, F. Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129342. [Google Scholar] [CrossRef]
- Silva, M.; Caro, V.; Guzman, C.; Perry, G.; Areche, C.; Cornejo, A. Cahpter 1—α-Synuclein and tau, two targets for dementia. Stud. Nat. Prod. Chem. 2020, 67, 1–25. [Google Scholar] [CrossRef]
- Zhao, F.; Rong, Y.; Wan, J.; Hu, Z.; Peng, Z.; Wang, B. High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced photogenerated charges separation under visible light. Catal. Today 2018, 315, 162–170. [Google Scholar] [CrossRef]
- Fan, J.; Li, D.; Wang, X. Effect of modified graphene quantum dots on photocatalytic degradation property. Diam. Relat. Mater. 2016, 69, 81–85. [Google Scholar] [CrossRef]
- Aljuaid, A.; Almehmadi, M.; Alsaiari, A.A.; Allahyani, M.; Abdulaziz, O.; Alsharif, A.; Alsaiari, J.A.; Saih, M.; Alotaibi, R.T.; Khan, I. g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023, 28, 3199. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wu, H.; Li, M.; Tang, T.; Wen, J.; Li, X. Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl. Surf. Sci. 2020, 526, 146724. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, Y.; Wang, L.; Chen, L.; Zhu, M. Oxygen vacancies in piezocatalysis: A critical review. Chem. Eng. J. 2024, 487, 150480. [Google Scholar] [CrossRef]
- Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect? Angew. Chem. Int. Ed. 2022, 61, e202110429. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Hao, A.; Chen, R.; Khan, M.F.; Jia, D. Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental remediation and understanding the charge transfer mechanism. Carbon 2024, 218, 118772. [Google Scholar] [CrossRef]
- Kanigaridou, Y.; Petala, A.; Frontistis, Z.; Antonopoulou, M.; Solakidou, M.; Konstantinou, I.; Deligiannakis, Y.; Mantzavinos, D.; Kondarides, D.I. Solar photocatalytic degradation of bisphenol A with CuOx/BiVO4: Insights into the unexpectedly favorable effect of bicarbonates. Chem. Eng. J. 2017, 318, 39–49. [Google Scholar] [CrossRef]
- Petala, A.; Bontemps, R.; Spartatouille, A.; Frontistis, Z.; Antonopoulou, M.; Konstantinou, I.; Kondarides, D.I.; Mantzavinos, D. Solar light-induced degradation of ethyl paraben with CuOx/BiVO4: Statistical evaluation of operating factors and transformation by-products. Catal. Today 2017, 280, 122–131. [Google Scholar] [CrossRef]
- Kouvelis, K.; Kampioti, A.A.; Petala, A.; Frontistis, Z. Degradation of Sulfamethoxazole Using a Hybrid CuOx–BiVO4/SPS/Solar System. Catalysts 2022, 12, 882. [Google Scholar] [CrossRef]
- Mishra, S.R.; Gadore, V.; Ahmaruzzaman, M. Inorganic–organic hybrid quantum dots for AOP-mediated photodegradation of ofloxacin and para-nitrophenol in diverse water matrices. Npj Clean Water 2023, 6, 78. [Google Scholar] [CrossRef]
- Ling, C.; Ye, X.; Zhang, J.; Zhang, J.; Zhang, S.; Meng, S.; Fu, X.; Chen, S. Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light. Sci. Rep. 2017, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Shittu, F.B.; Ibrahim, M.N.M.; Bakar, N.H.H.A.; Yahaya, N.; Rajappan, K.; Hussin, M.H.; Danial, W.H.; Wilson, L.D. Photoreactive Carbon Dots Modified g-C3N4 for Effective Photooxidation of Bisphenol-A under Visible Light Irradiation. Catalysts 2022, 12, 1311. [Google Scholar] [CrossRef]
- Patel, J.; Singh, A.K.; Carabineiro, S.A.C. Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots: Kinetic Study, Degradation Pathway and Influencing Factors. Nanomaterials 2020, 10, 964. [Google Scholar] [CrossRef]
- Awang, H.; Peppel, T.; Strunk, J. Photocatalytic Degradation of Diclofenac by Nitrogen-Doped Carbon Quantum Dot-Graphitic Carbon Nitride (CNQD). Catalysts 2023, 13, 735. [Google Scholar] [CrossRef]
- Liang, R.; He, Z.; Zhou, C.; Yan, G.; Wu, L. MOF-Derived Porous Fe2O3 Nanoparticles Coupled with CdS Quantum Dots for Degradation of Bisphenol A under Visible Light Irradiation. Nanomaterials 2020, 10, 1701. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.-H.; Sin, J.-C.; Lam, S.-M.; Zeng, H.; Lin, H.; Li, H.; Huang, L.; Mohamed, A.R. 3-D/3-D Z-Scheme Heterojunction Composite Formed by Marimo-like Bi2WO6 and Mammillaria-like ZnO for Expeditious Sunlight Photodegradation of Dimethyl Phthalate. Catalysts 2022, 12, 1427. [Google Scholar] [CrossRef]
- Ruidíaz-Martínez, M.; Álvarez, M.A.; López-Ramón, M.V.; Cruz-Quesada, G.; Rivera-Utrilla, J.; Sánchez-Polo, M. Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts 2020, 10, 520. [Google Scholar] [CrossRef]
- Silva, V.; Lima, D.L.D.; de Matos Gomes, E.; Almeida, B.; Calisto, V.; Baptista, R.M.F.; Pereira, G. Electrospun Nanofiber Dopped with TiO2 and Carbon Quantum Dots for the Photocatalytic Degradation of Antibiotics. Polymers 2024, 16, 2960. [Google Scholar] [CrossRef]
- Tian, M.; Hu, C.; Yu, J.; Chen, L. Carbon quantum dots (CQDs) mediated Z-scheme g–C3N4–CQDs/BiVO4 heterojunction with enhanced visible light photocatalytic degradation of Paraben. Chemosphere 2023, 323, 138248. [Google Scholar] [CrossRef]
- Guo, R.; Zeng, D.; Xie, Y.; Ling, Y.; Zhou, D.; Jiang, L.; Jiao, W.; Zhao, J.; Li, S. Carbon nitride quantum dots (CNQDs)/TiO2 nanoparticle heterojunction photocatalysts for enhanced ultraviolet-visible-light-driven bisphenol a degradation and H2 production. Int. J. Hydrogen Energy 2020, 45, 22534–22544. [Google Scholar] [CrossRef]
- Jorge, K.L.-V.; Guzmán-Mar, L.; Montalvo-Herrera, T.J.; Mendiola-Alvarez, S.Y.; Villanueva-Rodríguez, M. Efficient photocatalytic removal of four endocrine-disrupting compounds using N-doped BiOBr catalyst under UV-Vis radiation. J. Environ. Chem. Eng. 2021, 9, 106185. [Google Scholar] [CrossRef]
- Hou, J.; Li, H.; Tang, Y.; Sun, J.; Fu, H.; Qu, X.; Xu, Z.; Yin, D.; Zheng, S. Supported N-doped carbon quantum dots as the highly effective peroxydisulfate catalysts for bisphenol F degradation. Appl. Catal. B Environ. 2018, 238, 225–235. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, Y.; Tian, K.; Pang, H.; Hao, Y. Enhanced photocatalytic degradation of bisphenol A over N,S-doped carbon quantum dot-modified MIL-101(Fe) heterostructure composites under visible light irradiation by persulfate. Appl. Surf. Sci. 2022, 577, 151902. [Google Scholar] [CrossRef]
Material | Pesticide | Removal Efficiency/Constant of Degradation Rate | Conditions | Ref. |
---|---|---|---|---|
CQDs-SH/CdS QDs | Imidacloprid | 75.60% under simulated visible light 92.20% under UV-C | catalyst dose 1 g/L pesticide dose 10 ppm pH 7 t = 25 °C Degradation time 90 min | [15] |
ZnS/SG QDs/Ag2S 5 mg/25 mL | Diazinon Fenitrothion | 0.053 min−1 0.056 min−1 | catalyst dose (0.2 g/L) pesticide dose (10 g/L) t = 25 °C 60 W LED light | [16] |
CdS QDs/MIP | Imidacloprid (pH = 9) Buprofezin (pH = 10) | 81% 72% | catalyst dose 10 ppm pesticide dose 10 ppm Degradation time 120 min UV light | [17] |
CdS QDs/NIP | Imidacloprid (pH = 9) Buprofezin (pH = 10) | 76% 68% | catalyst dose 10 ppm pesticide dose 10 ppm Degradation time 120 min UV light | [17] |
Ag@CP-BNQDs | Chlorothalonil | 0.0053 min−1 | catalyst dose (1 g/L) pesticide dose (25 ppm) t = 25 °C 5 W of blue LED | [18] |
ZIF-CdS/Tpy QDs (0.7 g/L) | Imidacloprid | 90.95% 93.12% | catalyst dose 0.7 g/L pesticide dose 10 ppm 35 W LED lamp Degradation time 90 min pH 7 | [14] |
InP QDs InP/ZnS QDs | Deltamethrin | 93.36% 90.29% | catalyst dose (10 mg/kg) 300 W Degradation time 90 min Xe lamp | [23] |
TiO2/ZnO/CQD | Carbaryl | 99.01%, 0.0570 min−1 | catalyst dose 1 g/L pesticide dose 5 mg/L Degradation time 60 min | [19] |
N,S-CQD-Bi2O3 | 2,4-D Diuron | 92% 97% | catalyst dose 25 mg/30 mL pesticide dose 20 mg/L degradation time 2 h | [22] |
Ni2CuS4 QDs@30% Fe3O4 | Bromoxynil | 0.0070 min−1 | catalyst dose 20 mg/L pesticide dose 20 mg/L 1000 W halogen lamp degradation time 200 min amount of H2O2 100 µL | [20] |
GQD/α-FeOOH | Ciprofloxacin | 93.73% | catalyst dose 0.25 mg/L pesticide dose 10 mg/L 350 W Xe lamp degradation time 60 min H2O2 dose 0.50 mM | [21] |
No. | Chemical Structure | Name |
---|---|---|
1 | Ethylparaben | |
2 | Bisphenol A | |
3 | Sulfamethoxazole | |
4 | Norfloxacin | |
5 | Diclofenac | |
6 | Dimethyl Phthalate | |
7 | Para-nitrophenol | |
8 | Sulfadiazine |
Catalyst | CEC | Efficiency [%] | Time [min] | Conditions | Ref. |
---|---|---|---|---|---|
3.0 Cu.BVO | sulfamethoxazole | 100 | 22 | Solar/SPS | [48] |
Cd/CdIn2S4@Ch | p-Nitrophenol | 96.7 | 30 | H2O2, pH = 3 | [49] |
ofloxacin | 85.5 | 90 | H2O2, pH = 7 | ||
1.5CDs/g-C3N4 | BPA | Over 90 | 180 | pH = 10 | [51] |
Mn:ZnS | Norfloxacin | 86 | 60 | pH = 10 | [52] |
CNQD-6 | Diclofenac | 62 | 180 | Light irradiation | [53] |
5-CdS/F450 | BPA | 100 | 30 | pH = 4, H2O2 | [54] |
20-BWZ | Dimethyl Phthalate | 86.6 | 90 | Light irradiation | [55] |
7% rGO-TiO2 | Ethylparaben | 98.6 | 40 | Light irradiation | [56] |
PA66/TiO2/CQDs | AMX | Over 90 | 120 | pH = 8 | [57] |
SDZ | 88 | 240 | pH = 8 | ||
GCN-CQDs/BVO | Benzyl Paraben | 85.7 | 150 | pH = 4, light | [58] |
CNQDs-2.0/TiO2 | BPA | 100 | 80 | UV light | [59] |
N20BiOBr | E2 | 100 | 240 | pH = 6.5 | [60] |
EE2 | 100 | 240 | |||
4TOP | 100 | 240 | |||
BPA | 100 | 240 | |||
NCQD(2.10)/Al2O3-700 | BPF | 100 | 120 | pH = 6.4, 25 °C | [61] |
5-N,S:CQD/MIL-101(Fe) | BPA | 100 | 60 | PS/VIS | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matyszczak, G.; Yedzikhanau, A.; Jasiak, C.; Bojko, N.; Krawczyk, K. Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review. Catalysts 2025, 15, 591. https://doi.org/10.3390/catal15060591
Matyszczak G, Yedzikhanau A, Jasiak C, Bojko N, Krawczyk K. Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review. Catalysts. 2025; 15(6):591. https://doi.org/10.3390/catal15060591
Chicago/Turabian StyleMatyszczak, Grzegorz, Albert Yedzikhanau, Christopher Jasiak, Natalia Bojko, and Krzysztof Krawczyk. 2025. "Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review" Catalysts 15, no. 6: 591. https://doi.org/10.3390/catal15060591
APA StyleMatyszczak, G., Yedzikhanau, A., Jasiak, C., Bojko, N., & Krawczyk, K. (2025). Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review. Catalysts, 15(6), 591. https://doi.org/10.3390/catal15060591