Construction of Curly-like CN@CdS Z-Scheme Heterojunction to Boost Visible-Light-Driven H2O2 Evolution
Abstract
1. Introduction
2. Results
2.1. Structural Characterizations
2.2. Optical and Photoelectrochemical Characterization
2.3. Photocatalytic Performance of H2O2 Production
2.4. Possible Photocatalysis Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Photocatalysts
3.2.1. Synthesis of g-C3N4
3.2.2. Synthesis of CdS
3.2.3. Synthesis of CN@CdS Z-Scheme Heterojunction
3.3. Characterizations
3.4. Photocatalytic Synthesis and Degradation of H2O2 and Analytical Methods
3.4.1. Photocatalytic Synthesis of H2O2
3.4.2. Photocatalytic Decomposition of H2O2
3.4.3. Analytical Methods
3.5. Computational Detail
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Qiu, J.; Dai, D.; Yao, J. Tailoring metal–organic frameworks for photocatalytic H2O2 production. Coordin. Chem. Rev. 2024, 501, 215597. [Google Scholar] [CrossRef]
- Fang, W.; Wang, L. S-Scheme heterojunction photocatalyst for photocatalytic H2O2 production: A review. Catalysts 2023, 13, 1325. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, D.; Chu, C.; Mao, S. Photocatalytic H2O2 production systems: Design strategies and environmental applications. Chem. Eng. J. 2023, 451, 138489. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Fan, X.; Wang, H.; Liu, Y.; Chen, Y.; Yang, T.; Ye, J.; Huang, H.; Li, H.; et al. Small-molecule catalyzed H2O2 production via a phase-transfer photocatalytic process. Appl. Catal. B-Environ. 2022, 314, 121499. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Cao, J.; Wang, H.; Shao, M.; Huang, H.; Liu, Y.; Kang, Z. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl. Catal. B-Environ. 2020, 278, 119289. [Google Scholar] [CrossRef]
- Liao, Z.; Du, J.; Wang, L.; Yang, M.; Zhao, L.; Zhan, X.; Yang, H.; Yang, W.; Hou, H. Advances in Z-scheme photocatalysts for efficient photocatalytic H2O2 production: A comprehensive review. J. Alloys Compd. 2024, 976, 173322. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts. 2022, 12, 1316. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, F.; Li, B.; Yang, T.; Yang, F.; Qu, J.; Yang, X.; Cai, Y.; Hu, J. Electronic structure modulation of oxygen-enriched defective CdS for efficient photocatalytic H2O2 production. Small 2024, 20, 2400376. [Google Scholar] [CrossRef]
- Wang, K.; Xing, Z.; Meng, D.; Zhang, S.; Li, Z.; Pan, K.; Zhou, W. Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance. Appl. Catal. B-Environ. 2021, 281, 119482. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, R.; Sun, Q.; He, J.; Chen, D.; Li, N.; Li, H.; Marcomini, A.; Xu, Q.; Lu, J. Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light. Appl. Catal. B-Environ. 2023, 324, 122276. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zhu, X.; Ai, C.; Zeng, Y.; Shi, W.; Zhang, X.; Zhang, H.; Si, H.; Li, J.; et al. Photodepositing CdS on the active cyano groups decorated g-C3N4 in Z-Scheme manner promotes visible-light-driven hydrogen evolution. Small 2021, 17, 2102699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Feng, J.; Qiu, B.; Zhou, Y.; Lei, J.; Xing, M.; Wang, L.; Zhou, Y.; Liu, Y.; Zhang, J. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B-Environ. 2020, 267, 118396. [Google Scholar] [CrossRef]
- Zhu, Q.; Shi, Y.; Tao, Y.; Fu, L.; Zhang, C.; Shang, H.; Zhang, D.; Li, G. Binary heteroatom dopants enable carbon-based heterostructures for efficient photoelectrocatalytic H2O2 synthesis in a wide pH range. Chem. Eng. J. 2024, 482, 149066. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Jin, L.; Wu, K. Combination mechanism and enhanced visible-light photocatalytic activity and stability of CdS/g-C3N4 heterojunctions. J. Mater. Sci. Technol. 2017, 33, 30–38. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Z.; Hu, C.; Lin, S.; Wang, Y.; Wang, C.; Tian, N.; Zhang, Y.; Huang, H. Point-to-face Z-scheme junction Cd0.6Zn0.4S/g-C3N4 with a robust internal electric field for high-efficiency H2O2 production. J. Mater. Chem. A 2023, 11, 6384–6393. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Pham, T.-T.; Gendensuren, B.; Oh, E.-S.; Shin, E.W. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres. J. Mater. Sci. Technol. 2022, 103, 232–243. [Google Scholar] [CrossRef]
- Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Yang, S.; Zhou, W. Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Appl. Mater. Inter. 2019, 11, 7104–7111. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F.; Zhao, R.; Huai, X.; Han, J.; Wang, L. Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation. J. Mater. Sci. 2019, 54, 8571–8580. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, H.; He, Y.; Tian, N.; Zhang, T.; Chu, P.K.; An, Q.; Zhang, Y. In situ crystallization for fabrication of a core–satellite structured BiOBr–CdS heterostructure with excellent visible-light-responsive photoreactivity. Nanoscale. 2015, 7, 11702–11711. [Google Scholar] [CrossRef]
- Huang, M.; Liu, C.; Cui, P.; Wu, T.; Feng, X.; Huang, H.; Zhou, J.; Wang, Y. Facet-dependent photoinduced transformation of cadmium sulfide (CdS) nanoparticles. Environ. Sci. Technol. 2021, 55, 13132–13141. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, Z.; Tang, C.; Zhou, Y.; Zeng, L.; Huang, L. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Appl. Catal. B-Environ. 2019, 240, 30–38. [Google Scholar] [CrossRef]
- Chu, C.; Yao, D.; Chen, Z.; Liu, X.; Huang, Q.; Li, Q.; Mao, S. Cyano-regulated organic polymers for highly efficient photocatalytic H2O2 production in various actual water bodies. Small 2023, 19, 2303796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, Y.; Shi, W.; Tao, Z.; Liao, J.; Ai, C.; Si, H.; Wang, Z.; Fisher, A.C.; Lin, S. S-scheme heterojunction of core–shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide. Chem. Eng. J. 2022, 429, 131312. [Google Scholar] [CrossRef]
- Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Plasmonic near-infrared-response S-scheme ZnO/CuInS2 photocatalyst for H2O2 production coupled with glycerin oxidation. Adv. Mater. 2024, 36, 2406460. [Google Scholar] [CrossRef]
- Lai, C.; Xu, M.; Xu, F.; Li, B.; Ma, D.; Li, Y.; Li, L.; Zhang, M.; Huang, D.; Tang, L.; et al. An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air. Chem. Eng. J. 2023, 452, 139070. [Google Scholar] [CrossRef]
- Zhao, X.; You, Y.; Huang, S.; Wu, Y.; Ma, Y.; Zhang, G.; Zhang, Z. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B-Environ. 2020, 278, 119251. [Google Scholar] [CrossRef]
- Su, P.; Zhang, J.; Zhou, Y.; Wei, Z.; Zhao, S.; Yang, B.; Zhao, X.; Chen, J. Efficient photocatalytic production of hydrogen peroxide by Z-scheme resorcinol-formaldehyde resin/g-C3N4 heterostructure under visible light. Chem. Eng. J. 2023, 454, 140504. [Google Scholar] [CrossRef]
- Li, X.; Ye, F.; Zhang, H.; Ahmad, M.; Zeng, Z.; Wang, S.; Wang, S.; Gao, D.; Zhang, Q. Ternary rGO decorated W18O49@g-C3N4 composite as a full-spectrum-responded Z-scheme photocatalyst for efficient photocatalytic H2O2 production and water disinfection. J. Environ. Chem. Eng. 2023, 11, 110329. [Google Scholar] [CrossRef]
- Yu, X.; Xie, J.; Liu, Q.; Dong, H.; Li, Y. The origin of enhanced photocatalytic activity in g-C3N4/TiO2 heterostructure revealed by DFT calculations. J. Colloid Interf. Sci. 2021, 593, 133–141. [Google Scholar] [CrossRef]
Photocatalyst | g-C3N4 | CdS | CN@CdS-2 |
---|---|---|---|
H2O2 production (μM) | 38.97 | 13.97 | 86.7 |
AQY (%) | 1.01 | 0.36 | 2.24 |
Photocatalyst | H2O2 Yield(μmol g−1 h−1) | AQY (%) | Refs |
---|---|---|---|
CN@CdS-2 | 287.5 | 2.24 (450 nm) | This work |
ZnO/CuInS2 | 91 | 1.2 (365 nm) | [25] |
CdS/K2Ta2O6 | 160.89 | - | [26] |
Bi4O5Br2/g-C3N4 | 124 | 11.8 (420 nm) | [27] |
Resorcinol-formaldehyde Resin/g-C3N4 | 140 | - | [28] |
rGO decorated W18O49@g-C3N4 (r-CNW-2) | 49.4 | 1.2 (420 nm) | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Fang, W.; Bai, H.; Li, C.; Shen, D.; Wang, L. Construction of Curly-like CN@CdS Z-Scheme Heterojunction to Boost Visible-Light-Driven H2O2 Evolution. Catalysts 2025, 15, 543. https://doi.org/10.3390/catal15060543
Yu B, Fang W, Bai H, Li C, Shen D, Wang L. Construction of Curly-like CN@CdS Z-Scheme Heterojunction to Boost Visible-Light-Driven H2O2 Evolution. Catalysts. 2025; 15(6):543. https://doi.org/10.3390/catal15060543
Chicago/Turabian StyleYu, Bingkun, Weili Fang, Hongcun Bai, Chunhu Li, Dongcai Shen, and Liang Wang. 2025. "Construction of Curly-like CN@CdS Z-Scheme Heterojunction to Boost Visible-Light-Driven H2O2 Evolution" Catalysts 15, no. 6: 543. https://doi.org/10.3390/catal15060543
APA StyleYu, B., Fang, W., Bai, H., Li, C., Shen, D., & Wang, L. (2025). Construction of Curly-like CN@CdS Z-Scheme Heterojunction to Boost Visible-Light-Driven H2O2 Evolution. Catalysts, 15(6), 543. https://doi.org/10.3390/catal15060543